174 research outputs found

    Mechanosensitivity in the model sea anemone Nematostella vectensis

    Get PDF
    Abstract Tentacles of the sea anemone, Nematostella vectensis, are covered with hair bundles. Hair bundles were deXected by water jets to test whether they are mechanoreceptors. Electrophysiological recordings conWrm that deXections of hair bundles induce transients in membrane current. In a diVerent species of anemone, hair bundle mechanoreceptors are known to change shape and responsiveness according to the activity of chemoreceptors that bind prey-derived compounds including N-acetylated sugars. In Nematostella, hair bundles signiWcantly elongate upon exposure to NANA, an N-acetylated sugar. Based on a bioassay in which discharged nematocysts are counted in gelatin-coated test probes touched to tentacles, we Wnd that NANA shifts vibration dependent discharge of basitrich nematocysts to lower frequencies overlapping those produced during swimming by known prey including planktonic crustaceans. Furthermore, we Wnd for the Wrst time that vibration detection extends at least 2.5 cm beyond the tentacle tips. Thus, Nematostella likely employs its hair bundles to detect swimming movements of nearby prey

    Considerations for design of source apportionment studies

    Get PDF
    This report recommends procedures for source and ambient sampling and analysis in source apportionment studies. The recommendations are based on the results of receptor model studies of atmospheric particles in urban areas, especially a recent study of Houston, TX, undertaken as part of the Mathematical and Empirical Receptor Models Workshop (Quail Roost II). The recommendations are presented at three levels of increasing cost and detail of information obtained. Existing mass emissions inventories combined with chemically resolved test data from similar sources (not necessarily in the same locale) can be used to initially estimate the sources of elements present on ambient particles. To aid local users in construction of chemically resolved emission estimates, the U.S. Environmental Protection Agency (EPA) is compiling a library of compositions and size distributions of particulate emissions from major source types. More reliable source characterization can be achieved if the actual sources are tested directly. EPA should develop and publish detailed procedures for source sampling that would be more appropriate for receptor model use than are existing standard methods. Source and ambient sampling should be conducted by similar methods. If possible, particles from sources should be collected in a way that simulates changes that would normally occur before they reach distant receptors (e.g. by diluting and cooling the particles from hot sources). It is recommended that particulate samples be routinely collected in two size fractions by use of virtual impactors and that all samples be subjected, at a minimum, to mass and X-ray fluorescence analyses. Additional measurements are suggested for obtaining more detailed information: neutron activation analysis; X-ray diffraction; automated particle classification by electron microscopy; analyses for classes of organic species, ^(14)C and thermally released carbonaceous species; and real-time observation of several gases during sample collection. Methods for collecting meteorological data in parallel with ambient samples are described, as are methods for incorporating such data into the source identification process

    Effect of Particle Size on Droplet Infiltration into Hydrophobic Porous Media As a Model of Water Repellent Soil

    Get PDF
    The wettability of soil is of great importance for plants and soil biota, and in determining the risk for preferential flow, surface runoff, flooding,and soil erosion. The molarity of ethanol droplet (MED) test is widely used for quantifying the severity of water repellency in soils that show reduced wettability and is assumed to be independent of soil particle size. The minimum ethanol concentration at which droplet penetration occurs within a short time (≤10 s) provides an estimate of the initial advancing contact angle at which spontaneous wetting is expected. In this study, we test the assumption of particle size independence using a simple model of soil, represented by layers of small (0.2–2 mm) diameter beads that predict the effect of changing bead radius in the top layer on capillary driven imbibition. Experimental results using a three-layer bead system show broad agreement with the model and demonstrate a dependence of the MED test on particle size. The results show that the critical initial advancing contact angle for penetration can be considerably less than 90° and varies with particle size, demonstrating that a key assumption currently used in the MED testing of soil is not necessarily valid

    Frequent burning promotes invasions of alien plants into a mesic African savanna

    Get PDF
    Fire is both inevitable and necessary for maintaining the structure and functioning of mesic savannas. Without disturbances such as fire and herbivory, tree cover can increase at the expense of grass cover and over time dominate mesic savannas. Consequently, repeated burning is widely used to suppress tree recruitment and control bush encroachment. However, the effect of regular burning on invasion by alien plant species is little understood. Here, vegetation data from a long-term fire experiment, which began in 1953 in a mesic Zimbabwean savanna, were used to test whether the frequency of burning promoted alien plant invasion. The fire treatments consisted of late season fires, lit at 1-, 2-, 3-, and 4-year intervals, and these regularly burnt plots were compared with unburnt plots. Results show that over half a century of frequent burning promoted the invasion by alien plants relative to areas where fire was excluded. More alien plant species became established in plots that had a higher frequency of burning. The proportion of alien species in the species assemblage was highest in the annually burnt plots followed by plots burnt biennially. Alien plant invasion was lowest in plots protected from fire but did not differ significantly between plots burnt triennially and quadrennially. Further, the abundance of five alien forbs increased significantly as the interval (in years) between fires became shorter. On average, the density of these alien forbs in annually burnt plots was at least ten times as high as the density of unburnt plots. Plant diversity was also altered by long-term burning. Total plant species richness was significantly lower in the unburnt plots compared to regularly burnt plots. These findings suggest that frequent burning of mesic savannas enhances invasion by alien plants, with short intervals between fires favouring alien forbs. Therefore, reducing the frequency of burning may be a key to minimising the risk of alien plant spread into mesic savannas, which is important because invasive plants pose a threat to native biodiversity and may alter savanna functioning

    Climate Change, Human Health, and Resilience in the Holocene

    Get PDF
    Climate change is an indisputable threat to human health, especially for societies already confronted with rising social inequality, political and economic uncertainty, and a cascade of concurrent environmental challenges. Archaeological data about past climate and environment provide an important source of evidence about the potential challenges humans face and the long-term outcomes of alternative short-term adaptive strategies. Evidence from well-dated archaeological human skeletons and mummified remains speaks directly to patterns of human health over time through changing circumstances. Here, we describe variation in human epidemiological patterns in the context of past rapid climate change (RCC) events and other periods of past environmental change. Case studies confirm that human communities responded to environmental changes in diverse ways depending on historical, sociocultural, and biological contingencies. Certain factors, such as social inequality and disproportionate access to resources in large, complex societies may influence the probability of major sociopolitical disruptions and reorganizations—commonly known as “collapse.” This survey of Holocene human–environmental relations demonstrates how flexibility, variation, and maintenance of Indigenous knowledge can be mitigating factors in the face of environmental challenges. Although contemporary climate change is more rapid and of greater magnitude than the RCC events and other environmental changes we discuss here, these lessons from the past provide clarity about potential priorities for equitable, sustainable development and the constraints of modernity we must address

    Climate change, human health, and resilience in the Holocene

    Get PDF
    Climate change is an indisputable threat to human health, especially for societies already confronted with rising social inequality, political and economic uncertainty, and a cascade of concurrent environmental challenges. Archaeological data about past climate and environment provide an important source of evidence about the potential challenges humans face and the long-term outcomes of alternative short-term adaptive strategies. Evidence from well-dated archaeological human skeletons and mummified remains speaks directly to patterns of human health over time through changing circumstances. Here, we describe variation in human epidemiological patterns in the context of past rapid climate change (RCC) events and other periods of past environmental change. Case studies confirm that human communities responded to environmental changes in diverse ways depending on historical, sociocultural, and biological contingencies. Certain factors, such as social inequality and disproportionate access to resources in large, complex societies may influence the probability of major sociopolitical disruptions and reorganizations—commonly known as “collapse.” This survey of Holocene human–environmental relations demonstrates how flexibility, variation, and maintenance of Indigenous knowledge can be mitigating factors in the face of environmental challenges. Although contemporary climate change is more rapid and of greater magnitude than the RCC events and other environmental changes we discuss here, these lessons from the past provide clarity about potential priorities for equitable, sustainable development and the constraints of modernity we must address

    Rheotaxis in Larval Zebrafish Is Mediated by Lateral Line Mechanosensory Hair Cells

    Get PDF
    The lateral line sensory system, found in fish and amphibians, is used in prey detection, predator avoidance and schooling behavior. This system includes cell clusters, called superficial neuromasts, located on the surface of head and trunk of developing larvae. Mechanosensory hair cells in the center of each neuromast respond to disturbances in the water and convey information to the brain via the lateral line ganglia. The convenient location of mechanosensory hair cells on the body surface has made the lateral line a valuable system in which to study hair cell damage and regeneration. One way to measure hair cell survival and recovery is to assay behaviors that depend on their function. We built a system in which orientation against constant water flow, positive rheotaxis, can be quantitatively assessed. We found that zebrafish larvae perform positive rheotaxis and that, similar to adult fish, larvae use both visual and lateral line input to perform this behavior. Disruption or damage of hair cells in the absence of vision leads to a marked decrease in rheotaxis that recovers upon hair cell repair or regeneration
    corecore