12 research outputs found

    Presence of activating KRAS mutations correlates significantly with expression of tumour suppressor genes DCN and TPM1 in colorectal cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Despite identification of the major genes and pathways involved in the development of colorectal cancer (CRC), it has become obvious that several steps in these pathways might be bypassed by other as yet unknown genetic events that lead towards CRC. Therefore we wanted to improve our understanding of the genetic mechanisms of CRC development.</p> <p>Methods</p> <p>We used microarrays to identify novel genes involved in the development of CRC. Real time PCR was used for mRNA expression as well as to search for chromosomal abnormalities within candidate genes. The correlation between the expression obtained by real time PCR and the presence of the <it>KRAS </it>mutation was investigated.</p> <p>Results</p> <p>We detected significant previously undescribed underexpression in CRC for genes <it>SLC26A3</it>, <it>TPM1 </it>and <it>DCN</it>, with a suggested tumour suppressor role. We also describe the correlation between <it>TPM1 </it>and <it>DCN </it>expression and the presence of <it>KRAS </it>mutations in CRC. When searching for chromosomal abnormalities, we found deletion of the <it>TPM1 </it>gene in one case of CRC, but no deletions of <it>DCN </it>and <it>SLC26A3 </it>were found.</p> <p>Conclusion</p> <p>Our study provides further evidence of decreased mRNA expression of three important tumour suppressor genes in cases of CRC, thus implicating them in the development of this type of cancer. Moreover, we found underexpression of the <it>TPM1 </it>gene in a case of CRCs without <it>KRAS </it>mutations, showing that <it>TPM1 </it>might serve as an alternative path of development of CRC. This downregulation could in some cases be mediated by deletion of the <it>TPM1 </it>gene. On the other hand, the correlation of <it>DCN </it>underexpression with the presence of <it>KRAS </it>mutations suggests that <it>DCN </it>expression is affected by the presence of activating <it>KRAS </it>mutations, lowering the amount of the important tumour suppressor protein decorin.</p

    Polymorphisms in the 3′ Untranslated Region of the IκB/MAD-3 (NFKBI) Gene Located on Chromosome 14

    No full text
    The NF-κB transcription factor regulates the expression of a number of genes, including immune function and growth control loci, and several viruses. For example, the long terminal repeat of the human immunodeficiency virus contains NF-κB binding sites. NF-κB activity in the nucleus is regulated by a cellular inhibitory protein IκB. To analyze the potential role of these genes in genetic disease we have mapped the NF-κB (NFKB2) and IκB/MAD-3 (NFKBI) loci in a panel of somatic cell hybrids to chromosomes 4 and 14, respectively. Amplification of the 3′ untranslated region of NFKBI allows the detection of three independent polymorphisms within 410 bp. In combination these polymorphisms were informative in 27 of 36 CEPH families and allowed the gene to be placed onto the linkage map of chromosome 14, between the D14S32 and D14S42 markers

    Expression of LOC285758, a potential long non-coding biomarker, is methylation-dependent and correlates with glioma malignancy grade

    No full text
    Identifying the early genetic drivers can help diagnose glioma tumours in their early stages, before becoming malignant. However, there is emerging evidence that disturbance of epigenetic mechanisms also contributes to cell’s malignant transformation and cancer progression. Long non-coding RNAs are one of key epigenetic modulators of signalling pathways, since gene expression regulation is one of their canonical mechanisms. The aim of our study was to search new gliomagenesis-specific candidate lncRNAs involved in epigenetic regulation

    Dynamic expression of 11 miRNAs in 83 consecutive primary and corresponding recurrent glioblastoma: correlation to treatment, time to recurrence, overall survival and MGMT methylation status

    No full text
    Glioblastoma (GBM) is the most common and the most malignant glioma subtype. Among numerous genetic alterations, miRNAs contribute to pathogenesis of GBM and it is suggested that also to GBM recurrence and resistance to therapy. Based on publications, we have selected 11 miRNAs and analyzed their expression in GBM. We hypothesized that selected miRNAs are differentially expressed and involved in primary as well as in recurrent GBM, that show significant expressional differences when different treatment options are in question, and that are related to certain patients and tumor characteristics

    Ageing of the vitreous: From acute onset floaters and flashes to retinal detachment

    No full text
    Floaters and flashes are most commonly symptoms of age-related degenerative changes in the vitreous body and posterior vitreous detachment. The etiology and pathogenesis of floaters' formation is still not well understood. Patients with acute-onset floaters, flashes and defects in their visual field, represent a medical emergency with the need for same day referral to an ophthalmologist. Indirect ophthalmoscopy with scleral indentation is needed in order to find possible retinal break(s), on-time treatment and prevention of retinal detachment. The molecular and genetic pathogenesis, as well as the epidemiology of the ageing changes of the vitreous is summarized here, with view on the several treatment modalities in relation to their success rate and side-effects

    Long-term survival in glioblastoma: methyl guanine methyl transferase (MGMT) promoter methylation as independent favourable prognostic factor

    No full text
    In spite of significant improvement after multi-modality treatment, prognosis of most patients with glioblastoma remains poor. Standard clinical prognostic factors (age, gender, extent of surgery and performance status) do not clearly predict long-term survival. The aim of this case-control study was to evaluate immuno-histochemical and genetic characteristics of the tumour as additional prognostic factors in glioblastoma

    Electric pulses used in electrochemotherapy and electrogene therapy do not significantly change the expression profile of genes involved in the development of cancer in malignant melanoma cells

    No full text
    <p>Abstract</p> <p>Background</p> <p>Electroporation is a versatile method for <it>in vitro </it>or <it>in vivo </it>delivery of different molecules into cells. However, no study so far has analysed the effects of electric pulses used in electrochemotherapy (ECT pulses) or electric pulses used in electrogene therapy (EGT pulses) on malignant cells. We studied the effect of ECT and EGT pulses on human malignant melanoma cells <it>in vitro </it>in order to understand and predict the possible effect of electric pulses on gene expression and their possible effect on cell behaviour.</p> <p>Methods</p> <p>We used microarrays with 2698 different oligonucleotides to obtain the expression profile of genes involved in apoptosis and cancer development in a malignant melanoma cell line (SK-MEL28) exposed to ECT pulses and EGT pulses.</p> <p>Results</p> <p>Cells exposed to ECT pulses showed a 68.8% average survival rate, while cells exposed to EGT pulses showed a 31.4% average survival rate. Only seven common genes were found differentially expressed in cells 16 h after exposure to ECT and EGT pulses. We found that ECT and EGT pulses induce an HSP70 stress response mechanism, repress histone protein H4, a major protein involved in chromatin assembly, and down-regulate components involved in protein synthesis.</p> <p>Conclusion</p> <p>Our results show that electroporation does not significantly change the expression profile of major tumour suppressor genes or oncogenes of the cell cycle. Moreover, electroporation also does not changes the expression of genes involved in the stability of DNA, supporting current evidence that electroporation is a safe method that does not promote tumorigenesis. However, in spite of being considered an isothermal method, it does to some extent induce stress, which resulted in the expression of the environmental stress response mechanism, HSP70.</p

    Genetic characterization of northeastern Italian population isolates in the context of broader European genetic diversity

    No full text
    Population genetic studies on European populations have highlighted Italy as one of genetically most diverse regions. This is possibly due to the country's complex demographic history and large variability in terrain throughout the territory. This is the reason why Italy is enriched for population isolates, Sardinia being the best-known example. As the population isolates have a great potential in disease-causing genetic variants identification, we aimed to genetically characterize a region from northeastern Italy, which is known for isolated communities. Total of 1310 samples, collected from six geographically isolated villages, were genotyped at >145000 single-nucleotide polymorphism positions. Newly genotyped data were analyzed jointly with the available genome-wide data sets of individuals of European descent, including several population isolates. Despite the linguistic differences and geographical isolation the village populations still show the greatest genetic similarity to other Italian samples. The genetic isolation and small effective population size of the village populations is manifested by higher levels of genomic homozygosity and elevated linkage disequilibrium. These estimates become even more striking when the detected substructure is taken into account. The observed level of genetic isolation in Friuli-Venezia Giulia region is more extreme according to several measures of isolation compared with Sardinians, French Basques and northern Finns, thus proving the status of an isolate
    corecore