27 research outputs found

    The Water-Energy Nexus: investigation into the energy implications of household rainwater systems

    Full text link
    This report describes the results of a collaborative research project undertaken by the Institute for Sustainable Futures, at the University of Technology Sydney, for CSIRO, as part of the Water for a Healthy Country Flagship Collaboration Fund. The objective of the research project has been to examine the energy implications of emerging distributed water infrastructure, the ‘water energy nexus’.CSIR

    Renewable Power Options for Electrical Generation on Kaua'i: Economics and Performance Modeling

    Get PDF
    The Hawaii Clean Energy Initiative (HCEI) is working with a team led by the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) to assess the economic and technical feasibility of increasing the contribution of renewable energy in Hawaii. This part of the HCEI project focuses on working with Kaua'i Island Utility Cooperative (KIUC) to understand how to integrate higher levels of renewable energy into the electric power system of the island of Kaua'i. NREL partnered with KIUC to perform an economic and technical analysis and discussed how to model PV inverters in the electrical grid

    Integrating High Levels of Renewables in to the Lanai Electric Grid

    Get PDF
    The Hawaii Clean Energy Initiative (HCEI) is working with a team led by the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) and Sandia National Laboratory (Sandia) to assess the economic and technical feasibility of increasing the contribution of renewable energy sources on the island of Lanai with a stated goal of reaching 100% renewable energy. NREL and Sandia partnered with Castle & Cooke, Maui Electric Company (MECO), and SRA International to perform the assessment

    Identification of Linearized RMS-Voltage Dip Patterns Based on Clustering in Renewable Plants

    Full text link
    [EN] Generation units connected to the grid are currently required to meet low-voltage ride-through (LVRT) requirements. In most developed countries, these requirements also apply to renewable sources, mainly wind power plants and photovoltaic installations connected to the grid. This study proposes an alternative characterisation solution to classify and visualise a large number of collected events in light of current limits and requirements. The authors' approach is based on linearised root-mean-square-(RMS)-voltage trajectories, taking into account LRVT requirements, and a clustering process to identify the most likely pattern trajectories. The proposed solution gives extensive information on an event's severity by providing a simple but complete visualisation of the linearised RMS-voltage patterns. In addition, these patterns are compared to current LVRT requirements to determine similarities or discrepancies. A large number of collected events can then be automatically classified and visualised for comparative purposes. Real disturbances collected from renewable sources in Spain are used to assess the proposed solution. Extensive results and discussions are also included in this study.The authors thank the financial support from the 'Ministerio de Economia y Competitividad' (Spain) and the European Union - ENE2016-78214-C2-2-R, Fulbright/Spanish Ministry of Education Visiting Scholar - PRX14/00694. This work was also supported by the US Department of Energy under contract no. DE-AC36-08-GO28308 with the National Renewable Energy LaboratoryGarcía-Sánchez, TM.; Gómez-Lázaro, E.; Muljadi, E.; Kessler, M.; Muñoz-Benavente, I.; Molina-García, A. (2018). Identification of Linearized RMS-Voltage Dip Patterns Based on Clustering in Renewable Plants. IET Generation Transmission & Distribution. 12(6):1256-1262. https://doi.org/10.1049/iet-gtd.2017.0474S12561262126Craciun B. Kerekes T. Sera D.et al.: ‘Overview of recent grid codes for PV power integration’.13th Int. Conf. on Optimization of Electrical and Electronic Equipment (OPTIM) 2012 May2012 pp.959–965‘World Energy Outlook 2012’. Technical Report International Egency Agency (IEA) 2012. Available atwww.iea.orgBehrens C.E.: ‘Energy policy: 113th congress issues’.Congressional Research Service 2013Lopes, J. A. P., Hatziargyriou, N., Mutale, J., Djapic, P., & Jenkins, N. (2007). Integrating distributed generation into electric power systems: A review of drivers, challenges and opportunities. Electric Power Systems Research, 77(9), 1189-1203. doi:10.1016/j.epsr.2006.08.016Glassmire, J., Komor, P., & Lilienthal, P. (2012). Electricity demand savings from distributed solar photovoltaics. Energy Policy, 51, 323-331. doi:10.1016/j.enpol.2012.08.022Carvalho, D., Wemans, J., Lima, J., & Malico, I. (2011). Photovoltaic energy mini-generation: Future perspectives for Portugal. Energy Policy, 39(9), 5465-5473. doi:10.1016/j.enpol.2011.05.016Battaglini, A., Komendantova, N., Brtnik, P., & Patt, A. (2012). Perception of barriers for expansion of electricity grids in the European Union. Energy Policy, 47, 254-259. doi:10.1016/j.enpol.2012.04.065‘European Commission 2010a. Energy 2020. A strategy for competitive sustainable and secure energy’. Technical Report Brussels November2011Beurskens P.V.L.W.M. Hekkenberg M.: ‘Renewable energy projections as published in the national renewable energy action plans of the european member states’. Technical Report European Environment Agency (EEA) November2011Coll-Mayor, D., Paget, M., & Lightner, E. (2007). Future intelligent power grids: Analysis of the vision in the European Union and the United States. Energy Policy, 35(4), 2453-2465. doi:10.1016/j.enpol.2006.09.001Passey, R., Spooner, T., MacGill, I., Watt, M., & Syngellakis, K. (2011). The potential impacts of grid-connected distributed generation and how to address them: A review of technical and non-technical factors. Energy Policy, 39(10), 6280-6290. doi:10.1016/j.enpol.2011.07.027Sangroniz N. Mora J.A. Teixeira M.D.: ‘Review of international grid codes for wind generation’ 2009‘Global Market Outlook for Photovoltaics Until 2016’. Technical Report European Photovoltaic Industry Association 2012. Available atwww.epia.orgKim S. Bollen M.: ‘Towards the development of a set of grid code requirements for wind farms: transient reactive power requirements’. Technical Report Available as Elforsk Report 13 : 04. Part 3 Report of Vindforsk Project V‐369 Vindforsk III January2013Tsili, M., & Papathanassiou, S. (2009). A review of grid code technical requirements for wind farms. IET Renewable Power Generation, 3(3), 308. doi:10.1049/iet-rpg.2008.0070Hossain, J., & Mahmud, A. (Eds.). (2014). Renewable Energy Integration. Green Energy and Technology. doi:10.1007/978-981-4585-27-9Sourkounis C. Tourou P.: ‘Grid code requirements for wind power integration in Europe’.Conf. Papers in Energy 2013 pp.1–9Voltage Ride-Through Capability Verification of Wind Turbines With Fully-Rated Converters Using Reachability Analysis. (2014). IEEE Transactions on Energy Conversion, 29(2), 392-405. doi:10.1109/tec.2013.2295168Mohseni, M., & Islam, S. M. (2012). Review of international grid codes for wind power integration: Diversity, technology and a case for global standard. Renewable and Sustainable Energy Reviews, 16(6), 3876-3890. doi:10.1016/j.rser.2012.03.039‘Royal Decree 1565/2010 by which regulates and modifies certain aspects of the activity of production of electric energy in special regime. (In spanish)’. Technical Report November2010Sourkounis C. Tourou P.: ‘Grid code requirements for wind power integration in Europe’.Conf. Papers in Science 2013Jiménez, F., Gómez-Lázaro, E., Fuentes, J. A., Molina-García, A., & Vigueras-Rodríguez, A. (2011). Validation of a double fed induction generator wind turbine model and wind farm verification following the Spanish grid code. Wind Energy, 15(4), 645-659. doi:10.1002/we.498Montoro D.: ‘Recommendations for unified technical regulations for grid‐connected PV systems’. Technical Report SUNRISE project – European Photovoltaic Industry Association the European Construction Industry Federation the European Association of Electrical Contractors International Union of Architects 2009. Available athttp://www.pvsunrise.eu/Merino, J., Mendoza-Araya, P., & Veganzones, C. (2014). State of the Art and Future Trends in Grid Codes Applicable to Isolated Electrical Systems. Energies, 7(12), 7936-7954. doi:10.3390/en7127936deAlmeida P. Barbosa P. Duque C.et al.: ‘Grid connection considerations for the integration of PV and wind sources’.IEEE 16th Int. Conf. on Harmonics and Quality of Power (ICHQP) May2014 pp.6–9‘Network code requirements for grid connection applicable to all generators’. Technical Report European Network of Transmission System Operators for Electricity ENTSO‐E October2013. Available athttps://www.entsoe.eu/Kagan N. Ferrari E. Matsuo N.et al.: ‘Influence of rms variation measurement protocols on electrical system performance indices for voltage sags and swells’.Proc. Ninth Int. Conf. on Harmonics and Quality of Power 2000 2000 vol.3 pp.790–795Bollen, M. H. J. (2003). Algorithms for characterizing measured three-phase unbalanced voltage dips. IEEE Transactions on Power Delivery, 18(3), 937-944. doi:10.1109/tpwrd.2003.813879Bollen M.H.: ‘Comparing voltage dip survey results’.Power Engineering Society Winter Meeting 2002 2002 vol.2 pp.1130–1134Moreno‐Muñoz A. de laRosa J.: ‘Voltage sag in highly automated factories’.Industry Applications Society Annual Meeting IAS'08 2008 pp.1–6Gomez-Lazaro, E., Fuentes, J. A., Molina-Garcia, A., & Canas-Carreton, M. (2009). Characterization and Visualization of Voltage Dips in Wind Power Installations. IEEE Transactions on Power Delivery, 24(4), 2071-2078. doi:10.1109/tpwrd.2009.2027513Gunther, E. W., & Mebta, H. (1995). A survey of distribution system power quality-preliminary results. IEEE Transactions on Power Delivery, 10(1), 322-329. doi:10.1109/61.368382Belloni F. Chiappa C. Chiumeo R.et al.: ‘Voltage dip measurements along MV lines vs primary substations measurements’.Int. Conf. on Renewable Energies and Power Quality (ICREPQ'12) March2012 pp.28–30Garcia-Sanchez, T., Gomez-Lazaro, E., Muljadi, E., Kessler, M., & Molina-Garcia, A. (2016). Statistical and Clustering Analysis for Disturbances: A Case Study of Voltage Dips in Wind Farms. IEEE Transactions on Power Delivery, 31(6), 2530-2537. doi:10.1109/tpwrd.2016.2522946Barrera Nunez V. Melendez Frigola J. Herraiz Jaramillo S.: ‘A survey on voltage sag events in power systems’.IEEE/PES Transmission and Distribution Conf. and Exposition: Latin America 2008 August2008 pp.1–3‘IEEE Standard 519‐1992: Recommended practices and requirements for harmonic control in electrical power systems’. Technical Report 1993. Available athttp://ieeexplore.ieee.org/servlet/opac?punumber=2227‘1159‐2009‐IEEE Recommended practice for monitoring electric power quality’. Technical Report June2009. Available athttp://ieeexplore.ieee.org/servlet/opac?punumber=515405

    The Science Performance of JWST as Characterized in Commissioning

    Get PDF
    This paper characterizes the actual science performance of the James Webb Space Telescope (JWST), as determined from the six month commissioning period. We summarize the performance of the spacecraft, telescope, science instruments, and ground system, with an emphasis on differences from pre-launch expectations. Commissioning has made clear that JWST is fully capable of achieving the discoveries for which it was built. Moreover, almost across the board, the science performance of JWST is better than expected; in most cases, JWST will go deeper faster than expected. The telescope and instrument suite have demonstrated the sensitivity, stability, image quality, and spectral range that are necessary to transform our understanding of the cosmos through observations spanning from near-earth asteroids to the most distant galaxies

    The James Webb Space Telescope Mission

    Full text link
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4m4m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5m6.5m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 years, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space Telescope Overview, 29 pages, 4 figure

    Integrating Renewable Energy into the Transmission and Distribution System of the U. S. Virgin Islands

    No full text
    This report focuses on the economic and technical feasibility of integrating renewable energy technologies into the U.S. Virgin Islands transmission and distribution systems. The report includes three main areas of analysis: 1) the economics of deploying utility-scale renewable energy technologies on St. Thomas/St. John and St. Croix; 2) potential sites for installing roof- and ground-mount PV systems and wind turbines and the impact renewable generation will have on the electrical subtransmission and distribution infrastructure, and 3) the feasibility of a 100- to 200-megawatt power interconnection of the Puerto Rico Electric Power Authority (PREPA), Virgin Islands Water and Power Authority (WAPA), and British Virgin Islands (BVI) grids via a submarine cable system
    corecore