149 research outputs found

    Probing the dusty stellar populations of the Local Volume Galaxies with JWST/MIRI

    Full text link
    The Mid-Infrared Instrument (MIRI) for the {\em James Webb Space Telescope} (JWST) will revolutionize our understanding of infrared stellar populations in the Local Volume. Using the rich {\em Spitzer}-IRS spectroscopic data-set and spectral classifications from the Surveying the Agents of Galaxy Evolution (SAGE)-Spectroscopic survey of over a thousand objects in the Magellanic Clouds, the Grid of Red supergiant and Asymptotic giant branch star ModelS ({\sc grams}), and the grid of YSO models by Robitaille et al. (2006), we calculate the expected flux-densities and colors in the MIRI broadband filters for prominent infrared stellar populations. We use these fluxes to explore the {\em JWST}/MIRI colours and magnitudes for composite stellar population studies of Local Volume galaxies. MIRI colour classification schemes are presented; these diagrams provide a powerful means of identifying young stellar objects, evolved stars and extragalactic background galaxies in Local Volume galaxies with a high degree of confidence. Finally, we examine which filter combinations are best for selecting populations of sources based on their JWST colours.Comment: 16 pages, 7 figures, 2 online tables; accepted for publication in Ap

    Specsim: The MIRI Medium Resolution Spectrometer Simulator

    Get PDF
    MIRI, the Mid-InfraRed Instrument, is one of four instruments being built for the James Webb Space Telescope, and is developed jointly between an EuropeanConsortium and the US. In this paper we present a software data simulator for one of MIRI's four instruments: the Integral Field Unit (IFU) Medium Resolution Spectrometer (MIRI-MRS), the first mid-infrared IFU spectrograph, and one of the first IFUs to be used in a space mission. To give the MIRI community a preview of the properties of the MIRI-MRS data products before the telescope is operational, the Specsim tool has been developed to model, in software, the operation of the spectrometer. Specsim generates synthetic data frames approximating those which will be taken by the instrument in orbit. The program models astronomical sources and generates detector frames using the predicted and measured optical properties of the telescope and MIRI. These frames can then be used to illustrate and inform a range of operational activities, including data calibration strategies and the development and testing of the data reduction software for the MIRI-MRS. Specsim will serve as a means of communication between the many consortium members by providing a way to easily illustrate the performance of the spectrometer under different circumstances, tolerances of components and design scenarios.Comment: 8 pages, 5 figures; A high resolution version is available at http://www.roe.ac.uk/~npfl/Publications/lgw+06.ps.gz (Changed URL of high-res version

    Source-gated transistors in poly-silicon

    Full text link

    Optical performance of the JWST MIRI flight model: characterization of the point spread function at high-resolution

    Get PDF
    The Mid Infra Red Instrument (MIRI) is one of the four instruments onboard the James Webb Space Telescope (JWST), providing imaging, coronagraphy and spectroscopy over the 5-28 microns band. To verify the optical performance of the instrument, extensive tests were performed at CEA on the flight model (FM) of the Mid-InfraRed IMager (MIRIM) at cryogenic temperatures and in the infrared. This paper reports on the point spread function (PSF) measurements at 5.6 microns, the shortest operating wavelength for imaging. At 5.6 microns the PSF is not Nyquist-sampled, so we use am original technique that combines a microscanning measurement strategy with a deconvolution algorithm to obtain an over-resolved MIRIM PSF. The microscanning consists in a sub-pixel scan of a point source on the focal plane. A data inversion method is used to reconstruct PSF images that are over-resolved by a factor of 7 compared to the native resolution of MIRI. We show that the FWHM of the high-resolution PSFs were 5-10% wider than that obtained with Zemax simulations. The main cause was identified as an out-of-specification tilt of the M4 mirror. After correction, two additional test campaigns were carried out, and we show that the shape of the PSF is conform to expectations. The FWHM of the PSFs are 0.18-0.20 arcsec, in agreement with simulations. 56.1-59.2% of the total encircled energy (normalized to a 5 arcsec radius) is contained within the first dark Airy ring, over the whole field of view. At longer wavelengths (7.7-25.5 microns), this percentage is 57-68%. MIRIM is thus compliant with the optical quality requirements. This characterization of the MIRIM PSF, as well as the deconvolution method presented here, are of particular importance, not only for the verification of the optical quality and the MIRI calibration, but also for scientific applications.Comment: 13 pages, submitted to SPIE Proceedings vol. 7731, Space Telescopes and Instrumentation 2010: Optical, Infrared, and Millimeter Wav

    The Mid-Infrared Instrument for the James Webb Space Telescope, V: Predicted Performance of the MIRI Coronagraphs

    Full text link
    The imaging channel on the Mid-Infrared Instrument (MIRI) is equipped with four coronagraphs that provide high contrast imaging capabilities for studying faint point sources and extended emission that would otherwise be overwhelmed by a bright point-source in its vicinity. Such bright sources might include stars that are orbited by exoplanets and circumstellar material, mass-loss envelopes around post-main-sequence stars, the near-nuclear environments in active galaxies, and the host galaxies of distant quasars. This paper describes the coronagraphic observing modes of MIRI, as well as performance estimates based on measurements of the MIRI flight model during cryo-vacuum testing. A brief outline of coronagraphic operations is also provided. Finally, simulated MIRI coronagraphic observations of a few astronomical targets are presented for illustration

    The Origin of the Silicate Emission Features in the Seyfert 2 Galaxy, NGC 2110

    Full text link
    The unified model of active galactic nuclei (AGN) predicts silicate emission features at 10 and 18 microns in type 1 AGN, and such features have now been observed in objects ranging from distant QSOs to nearby LINERs. More surprising, however, is the detection of silicate emission in a few type 2 AGN. By combining Gemini and Spitzer mid-infrared imaging and spectroscopy of NGC 2110, the closest known Seyfert 2 galaxy with silicate emission features, we can constrain the location of the silicate emitting region to within 32 pc of the nucleus. This is the strongest constraint yet on the size of the silicate emitting region in a Seyfert galaxy of any type. While this result is consistent with a narrow line region origin for the emission, comparison with clumpy torus models demonstrates that emission from an edge-on torus can also explain the silicate emission features and 2-20 micron spectral energy distribution of this object. In many of the best-fitting models the torus has only a small number of clouds along the line of sight, and does not extend far above the equatorial plane. Extended silicate-emitting regions may well be present in AGN, but this work establishes that emission from the torus itself is also a viable option for the origin of silicate emission features in active galaxies of both type 1 and type 2.Comment: ApJL, accepte

    E-ELT/METIS

    Full text link
    The Mid-infrared E-ELT Imager and Spectrograph (METIS) will be one of the first three scientific instruments on the European Extremely Large Telescope (E-ELT). It will be the only instrument to cover the thermal/mid-infrared wavelength range from 3-19 μm. METIS offers a number of scientifically important observing modes, including diffraction-limited imaging, low resolution slit spectroscopy, coronagraphy, and high resolution (R ˜ 100,000) integral field spectroscopy at very high sensitivity. This paper gives a brief summary of METIS and focuses on its unique discovery space in the area of protoplanetary disks, where METIS is quite complementary to ALMA and JWST

    Dust in the inner regions of debris disks around A stars

    Get PDF
    We present infrared interferometric observations of the inner regions of two A-star debris disks, beta Leo and zeta Lep, using the FLUOR instrument at the CHARA interferometer on both short (30 m) and long (>200 m) baselines. For the target stars, the short baseline visibilities are lower than expected for the stellar photosphere alone, while those of a check star, delta Leo, are not. We interpret this visibility offset of a few percent as a near-infrared excess arising from dust grains which, due to the instrumental field of view, must be located within several AU of the central star. For beta Leo, the near-infrared excess producing grains are spatially distinct from the dust which produces the previously known mid-infrared excess. For zeta Lep, the near-infrared excess may be spatially associated with the mid-infrared excess producing material. We present simple geometric models which are consistent with the near and mid-infrared excess and show that for both objects, the near-infrared producing material is most consistent with a thin ring of dust near the sublimation radius with typical grain sizes smaller than the nominal radiation pressure blowout radius. Finally, we discuss possible origins of the near-infrared emitting dust in the context of debris disk evolution models.Comment: 20 pages, 2 figures, to appear in the Astrophysical Journa
    corecore