517 research outputs found
The fungal cell death regulator czt-1 is allelic to acr-3
Fungal infections have far-reaching implications that range from severe human disease to a panoply of disruptive agricultural and ecological effects, making it imperative to identify and understand the molecular pathways governing the response to antifungal compounds. In this context, CZT-1 (cell death-activated zinc cluster transcription factor) functions as a master regulator of cell death and drug susceptibility in Neurospora crassa. Here we provide evidence indicating that czt-1 is allelic to acr-3, a previously described locus that we now found to harbor a point mutation in its coding sequence. This nonsynonymous amino acid substitution in a low complexity region of CZT-1/ACR-3 caused a robust gain-of-function that led to reduced sensitivity to acriflavine and staurosporine, and increased expression of the drug efflux pump abc-3. Thus, accumulating evidence shows that CZT-1 is an important broad regulator of the cellular response to various antifungal compounds that appear to share common molecular targets.A.P.G. was recipient of a fellowship from Fundação Calouste Gulbenkian (104210) and a short-term fellowship from EMBO (329-2012). This work was supported by FCT Portugal (PEst-C/SAU/LA0002/2013 and FCOMP-01-0124-FEDER-037277 to A.V.), the European POCI program of QCAIII co-participated by FEDER (NORTE-07-0124-FEDER-000003) and the National Science Foundation (DBI 0742713 to the Fungal Genetics Stock Center – K.M.)
A self-organized model for cell-differentiation based on variations of molecular decay rates
Systemic properties of living cells are the result of molecular dynamics
governed by so-called genetic regulatory networks (GRN). These networks capture
all possible features of cells and are responsible for the immense levels of
adaptation characteristic to living systems. At any point in time only small
subsets of these networks are active. Any active subset of the GRN leads to the
expression of particular sets of molecules (expression modes). The subsets of
active networks change over time, leading to the observed complex dynamics of
expression patterns. Understanding of this dynamics becomes increasingly
important in systems biology and medicine. While the importance of
transcription rates and catalytic interactions has been widely recognized in
modeling genetic regulatory systems, the understanding of the role of
degradation of biochemical agents (mRNA, protein) in regulatory dynamics
remains limited. Recent experimental data suggests that there exists a
functional relation between mRNA and protein decay rates and expression modes.
In this paper we propose a model for the dynamics of successions of sequences
of active subnetworks of the GRN. The model is able to reproduce key
characteristics of molecular dynamics, including homeostasis, multi-stability,
periodic dynamics, alternating activity, differentiability, and self-organized
critical dynamics. Moreover the model allows to naturally understand the
mechanism behind the relation between decay rates and expression modes. The
model explains recent experimental observations that decay-rates (or turnovers)
vary between differentiated tissue-classes at a general systemic level and
highlights the role of intracellular decay rate control mechanisms in cell
differentiation.Comment: 16 pages, 5 figure
Healthcare costs in women with metastatic breast cancer receiving chemotherapy as their principal treatment modality
<p>Abstract</p> <p>Background</p> <p>The economic costs of treating patients with metastatic breast cancer have been examined in several studies, but available estimates of economic burden are at least a decade old. In this study, we characterize healthcare utilization and costs in the US among women with metastatic breast cancer receiving chemotherapy as their principal treatment modality.</p> <p>Methods</p> <p>Using a large private health insurance claims database (2000-2006), we identified all women initiating chemotherapy for metastatic breast cancer with no evidence of receipt of concomitant or subsequent hormonal therapy, or receipt of trastuzumab at anytime. Healthcare utilization and costs (inpatient, outpatient, medication) were estimated on a cumulative basis from date of chemotherapy initiation ("index date") to date of disenrollment from the health plan or the end of the study period, whichever occurred first. Study measures were cumulated over time using the Kaplan-Meier Sample Average (KMSA) method; 95% CIs were generated using nonparametric bootstrapping. Findings also were examined among the subgroup of patients with uncensored data.</p> <p>Results</p> <p>The study population consisted of 1444 women; mean (SD) age was 59.1 (12.1) years. Over a mean follow-up of 532 days (range: 3 to 2412), study subjects averaged 1.7 hospital admissions, 10.7 inpatient days, and 83.6 physician office and hospital outpatient visits. Mean (95% CI) cumulative total healthcare costs were 118,409, $137,644) per patient. Outpatient services accounted for 29% of total costs, followed by medication other than chemotherapy (26%), chemotherapy (25%), and inpatient care (20%).</p> <p>Conclusions</p> <p>Healthcare costs-especially in the outpatient setting--are substantial among women with metastatic breast cancer for whom treatment options other than chemotherapy are limited.</p
Network model of immune responses reveals key effectors to single and co-infection dynamics by a respiratory bacterium and a gastrointestinal helminth
Co-infections alter the host immune response but how the systemic and local processes at the site of infection interact is still unclear. The majority of studies on co-infections concentrate on one of the infecting species, an immune function or group of cells and often focus on the initial phase of the infection. Here, we used a combination of experiments and mathematical modelling to investigate the network of immune responses against single and co-infections with the respiratory bacterium Bordetella bronchiseptica and the gastrointestinal helminth Trichostrongylus retortaeformis. Our goal was to identify representative mediators and functions that could capture the essence of the host immune response as a whole, and to assess how their relative contribution dynamically changed over time and between single and co-infected individuals. Network-based discrete dynamic models of single infections were built using current knowledge of bacterial and helminth immunology; the two single infection models were combined into a co-infection model that was then verified by our empirical findings. Simulations showed that a T helper cell mediated antibody and neutrophil response led to phagocytosis and clearance of B. bronchiseptica from the lungs. This was consistent in single and co-infection with no significant delay induced by the helminth. In contrast, T. retortaeformis intensity decreased faster when co-infected with the bacterium. Simulations suggested that the robust recruitment of neutrophils in the co-infection, added to the activation of IgG and eosinophil driven reduction of larvae, which also played an important role in single infection, contributed to this fast clearance. Perturbation analysis of the models, through the knockout of individual nodes (immune cells), identified the cells critical to parasite persistence and clearance both in single and co-infections. Our integrated approach captured the within-host immuno-dynamics of bacteria-helminth infection and identified key components that can be crucial for explaining individual variability between single and co-infections in natural populations
Extended 2D myotube culture recapitulates postnatal fibre type plasticity
Background: The traditional problems of performing skeletal muscle cell cultures derived from mammalian or avian species are limited myotube differentiation, and transient myotube persistence which greatly restricts the ability of myotubes to undergo phenotypic maturation. We report here on a major technical breakthrough in the establishment of a simple and effective method of extended porcine myotube cultures (beyond 50 days) in two-dimension (2D) that recapitulates key features of postnatal fibre types.
Results: Primary porcine muscle satellite cells (myoblasts) were isolated from the longissimus dorsi of 4 to 6 weeks old pigs for 2D cultures to optimise myotube formation, improve surface adherence and characterise myotube maturation. Over 95 % of isolated cells were myoblasts as evidenced by the expression of Pax3 and Pax7. Our relatively simple approach, based on modifications of existing surface coating reagents (Maxgel), and of proliferation and differentiation (Ultroser G) media, typically achieved by 5 days of differentiation fusion index of around 80 % manifested in an abundance of discrete myosin heavy chain (MyHC) slow and fast myotubes. There was little deterioration in myotube viability over 50 days, and the efficiency of myotube formation was maintained over seven myoblast passages. Regular spontaneous contractions of myotubes were frequently observed throughout culture. Myotubes in extended cultures were able to undergo phenotypic adaptation in response to different culture media, including the adoption of a dominant postnatal phenotype of fast-glycolytic MyHC 2x and 2b expression by about day 20 of differentiation. Furthermore, fast-glycolytic myotubes coincided with enhanced expression of the putative porcine long intergenic non-coding RNA (linc-MYH), which has recently been shown to be a key coordinator of MyHC 2b expression in vivo.
Conclusions: Our revised culture protocol allows the efficient differentiation and fusion of porcine myoblasts into myotubes and their prolonged adherence to the culture surface. Furthermore, we are able to recapitulate in 2D the maturation process of myotubes to resemble postnatal fibre types which represent a major technical advance in opening access to the in vitro study of coordinated postnatal muscle gene expression
The nuclear receptors of Biomphalaria glabrata and Lottia gigantea: Implications for developing new model organisms
© 2015 Kaur et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are creditedNuclear receptors (NRs) are transcription regulators involved in an array of diverse physiological functions including key roles in endocrine and metabolic function. The aim of this study was to identify nuclear receptors in the fully sequenced genome of the gastropod snail, Biomphalaria glabrata, intermediate host for Schistosoma mansoni and compare these to known vertebrate NRs, with a view to assessing the snail's potential as a invertebrate model organism for endocrine function, both as a prospective new test organism and to elucidate the fundamental genetic and mechanistic causes of disease. For comparative purposes, the genome of a second gastropod, the owl limpet, Lottia gigantea was also investigated for nuclear receptors. Thirty-nine and thirty-three putative NRs were identified from the B. glabrata and L. gigantea genomes respectively, based on the presence of a conserved DNA-binding domain and/or ligand-binding domain. Nuclear receptor transcript expression was confirmed and sequences were subjected to a comparative phylogenetic analysis, which demonstrated that these molluscs have representatives of all the major NR subfamilies (1-6). Many of the identified NRs are conserved between vertebrates and invertebrates, however differences exist, most notably, the absence of receptors of Group 3C, which includes some of the vertebrate endocrine hormone targets. The mollusc genomes also contain NR homologues that are present in insects and nematodes but not in vertebrates, such as Group 1J (HR48/DAF12/HR96). The identification of many shared receptors between humans and molluscs indicates the potential for molluscs as model organisms; however the absence of several steroid hormone receptors indicates snail endocrine systems are fundamentally different.The National Centre for the Replacement, Refinement and Reduction of Animals in Research, Grant Ref:G0900802 to CSJ, LRN, SJ & EJR [www.nc3rs.org.uk]
DNA Methylation of the First Exon Is Tightly Linked to Transcriptional Silencing
Tissue specific patterns of methylated cytosine residues vary with age, can be altered by environmental factors, and are often abnormal in human disease yet the cellular consequences of DNA methylation are incompletely understood. Although the bodies of highly expressed genes are often extensively methylated in plants, the relationship between intragenic methylation and expression is less clear in mammalian cells. We performed genome-wide analyses of DNA methylation and gene expression to determine how the pattern of intragenic methylation correlates with transcription and to assess the relationship between methylation of exonic and intronic portions of the gene body. We found that dense exonic methylation is far more common than previously recognized or expected statistically, yet first exons are relatively spared compared to more downstream exons and introns. Dense methylation surrounding the transcription start site (TSS) is uncoupled from methylation within more downstream regions suggesting that there are at least two classes of intragenic methylation. Whereas methylation surrounding the TSS is tightly linked to transcriptional silencing, methylation of more downstream regions is unassociated with the magnitude of gene expression. Notably, we found that DNA methylation downstream of the TSS, in the region of the first exon, is much more tightly linked to transcriptional silencing than is methylation in the upstream promoter region. These data provide direct evidence that DNA methylation is interpreted dissimilarly in different regions of the gene body and suggest that first exon methylation blocks transcript initiation, or vice versa. Our data also show that once initiated, downstream methylation is not a significant impediment to polymerase extension. Thus, the consequences of most intragenic DNA methylation must extend beyond the modulation of transcription magnitude
A meta-analysis of long-term effects of conservation agriculture on maize grain yield under rain-fed conditions
Conservation agriculture involves reduced tillage, permanent soil cover and crop rotations to enhance soil fertility and to supply food from a dwindling land resource. Recently, conservation agriculture has been promoted in Southern Africa, mainly for maize-based farming systems. However, maize yields under rain-fed conditions are often variable. There is therefore a need to identify factors that influence crop yield under conservation agriculture and rain-fed conditions. Here, we studied maize grain yield data from experiments lasting 5 years and more under rain-fed conditions. We assessed the effect of long-term tillage and residue retention on maize grain yield under contrasting soil textures, nitrogen input and climate. Yield variability was measured by stability analysis. Our results show an increase in maize yield over time with conservation agriculture practices that include rotation and high input use in low rainfall areas. But we observed no difference in system stability under those conditions. We observed a strong relationship between maize grain yield and annual rainfall. Our meta-analysis gave the following findings: (1) 92% of the data show that mulch cover in high rainfall areas leads to lower yields due to waterlogging; (2) 85% of data show that soil texture is important in the temporal development of conservation agriculture effects, improved yields are likely on well-drained soils; (3) 73% of the data show that conservation agriculture practices require high inputs especially N for improved yield; (4) 63% of data show that increased yields are obtained with rotation but calculations often do not include the variations in rainfall within and between seasons; (5) 56% of the data show that reduced tillage with no mulch cover leads to lower yields in semi-arid areas; and (6) when adequate fertiliser is available, rainfall is the most important determinant of yield in southern Africa. It is clear from our results that conservation agriculture needs to be targeted and adapted to specific biophysical conditions for improved impact
- …