654 research outputs found
Pulse rates recorded by digital film positioner
System converts detector pulse rates to photographs of binary scale indicator lights on continuously moving film. The system then scans the film and transfers the data to computer-compatible magnetic tape
The New Kid on the Block: IFS Informed Financial Therapy
Internal Family Systems℠(IFS) therapy is an evidenced-based therapeutic (EBT) tool used to treat various mental health disorders and non-clinical issues. IFS is a promising new approach to building healthy financial behaviors when combined it with financial therapy. During a financial discussion, beliefs, money scripts, and stories around the client’s money history are expressed and are then explored using IFS protocols. IFS provides the financial therapist with a tool that has a high probability of being effective at helping clients access their hidden extreme beliefs, emotions, and stories around money and offers the hope of making changes resulting in lasting positive financial behaviors. The initial results of using IFS Informed Financial Therapy℠with a small pool of clients were promising in helping them address and change problematic financial behaviors. Obtaining IFS certification is possible for most financial therapists. It gives them expertise in an evidence-based model of therapy that can enhance the financial therapy process, which has broad implications
CFD-DEM modelling of particle ejection by a sensor-based automated sorter
© 2015 Elsevier Ltd. Abstract The efficiency of sensor-based automated sorting depends on both correct identification and separation of different types of particles. It is known that the distribution of particles fed to the sorter will affect both of these. When different particles are in close proximity, they can be "agglomerated" or seen as a single particle during identification and also have an increased probability of being unintentionally co-ejected. Both factors will have a negative effect on separation efficiency. The aim of this work was to model the air ejection manifold of a sensor-based automated sorter and to investigate the relationship between particle proximity and unintentional co-ejections. The airflow from a single air ejection valve of a sorter was modelled using computational fluid dynamics (CFD) software and calibrated against a Tomra Sorting Solutions optical sorter. It was found that the air ejection manifold could be accurately represented in CFD code. Particles were modelled using the discrete element method (DEM) software and the effect of particle position, relative to an air ejection valve, on accurate ejection was examined using an integrated CFD-DEM model. The results of these models matched reasonably well with physical measurements. The models created can be used as a basis for the prediction of sorter efficiency
Anodic Oxidation of m-terphenyl thio-, seleno-and telluroethers: Lowered oxidation potentials due to chalcogen.•••π interaction
The electrochemistry of m-terphenylthio-, seleno-, and telluroethers was studied
using cyclic voltammetry in acetonitrile. All of the compounds studied showed irreversible
oxidations. The first oxidation potentials for the thio- and selenoethers are less positive than
expected. This facilitation in oxidation is ascribed to through-space S···π and Se···π interaction,
respectively, on removal of an electron. No evidence for a comparable effect was
found for the phenyltelluro-ethers studied
Interferometric Constraints on Quantum Geometrical Shear Noise Correlations
Final measurements and analysis are reported from the first-generation
Holometer, the first instrument capable of measuring correlated variations in
space-time position at strain noise power spectral densities smaller than a
Planck time. The apparatus consists of two co-located, but independent and
isolated, 40 m power-recycled Michelson interferometers, whose outputs are
cross-correlated to 25 MHz. The data are sensitive to correlations of
differential position across the apparatus over a broad band of frequencies up
to and exceeding the inverse light crossing time, 7.6 MHz. By measuring with
Planck precision the correlation of position variations at spacelike
separations, the Holometer searches for faint, irreducible correlated position
noise backgrounds predicted by some models of quantum space-time geometry. The
first-generation optical layout is sensitive to quantum geometrical noise
correlations with shear symmetry---those that can be interpreted as a
fundamental noncommutativity of space-time position in orthogonal directions.
General experimental constraints are placed on parameters of a set of models of
spatial shear noise correlations, with a sensitivity that exceeds the
Planck-scale holographic information bound on position states by a large
factor. This result significantly extends the upper limits placed on models of
directional noncommutativity by currently operating gravitational wave
observatories.Comment: Matches the journal accepted versio
Synthesis and structure of m-terphenyl thio-, seleno-, and telluroethers
Several routes for the synthesis of m-terphenyl thio-, seleno-, and telluroethers were investigated. m-Terphenyl iodides react with diphenyl diselenides or ditellurides (CsOH·H₂O, DMSO, 110 °C) to give the desired compounds in 19−84% yield which significantly extends the previously reported such reactions because o-benzyne cannot be an intermediate as previously suggested. However, the most general synthetic route was that involving reaction of 2,6-diaryl Grignard reagents with sulfur, selenium, or tellurium electrophiles. The m-terphenyl thio-, seleno-, and telluroethers were characterized spectroscopically and, in one case, by single-crystal X-ray analysis. Certain of these compounds showed atropisomerism and barriers for interconversion of isomers were determined by variable-temperature NMR spectroscopy. The barriers for interconverting the syn and anti atropisomers increase on going from the analogous S to Se to Te compounds. Calculations on this isomerization revealed that the barriers are due to rotation about the aryl−aryl bond and that the barriers for rotation about the aryl−chalcogen bond are much lower
Biosynthesis of Selenocysteine on Its tRNA in Eukaryotes
Selenocysteine (Sec) is cotranslationally inserted into protein in response to UGA codons and is the 21st amino acid in the genetic code. However, the means by which Sec is synthesized in eukaryotes is not known. Herein, comparative genomics and experimental analyses revealed that the mammalian Sec synthase (SecS) is the previously identified pyridoxal phosphate-containing protein known as the soluble liver antigen. SecS required selenophosphate and O-phosphoseryl-tRNA([Ser]Sec) as substrates to generate selenocysteyl-tRNA([Ser]Sec). Moreover, it was found that Sec was synthesized on the tRNA scaffold from selenide, ATP, and serine using tRNA([Ser]Sec), seryl-tRNA synthetase, O-phosphoseryl-tRNA([Ser]Sec) kinase, selenophosphate synthetase, and SecS. By identifying the pathway of Sec biosynthesis in mammals, this study not only functionally characterized SecS but also assigned the function of the O-phosphoseryl-tRNA([Ser]Sec) kinase. In addition, we found that selenophosphate synthetase 2 could synthesize monoselenophosphate in vitro but selenophosphate synthetase 1 could not. Conservation of the overall pathway of Sec biosynthesis suggests that this pathway is also active in other eukaryotes and archaea that synthesize selenoproteins
Infrared Spectroscopy of Symbiotic Stars. IV. V2116 Ophiuchi/GX 1+4, The Neutron Star Symbiotic
We have computed, based on 17 infrared radial velocities, the first set of
orbital elements for the M giant in the symbiotic binary V2116 Ophiuchi. The
giant's companion is a neutron star, the bright X-ray source GX 1+4. We find an
orbital period of 1161 days by far the longest of any known X-ray binary. The
orbit has a modest eccentricity of 0.10 with an orbital circularization time of
less than 10^6 years. The large mass function of the orbit significantly
restricts the mass of the M giant. Adopting a neutron-star mass of 1.35M(Sun),
the maximum mass of the M giant is 1.22M(Sun), making it the less massive star.
Derived abundances indicate a slightly subsolar metallicity. Carbon and
nitrogen are in the expected ratio resulting from the red-giant first dredge-up
phase. The lack of O-17 suggests that the M-giant has a mass less than
1.3M(Sun), consistent with our maximum mass. The red giant radius is 103R(Sun),
much smaller than the estimated Roche lobe radius. Thus, the mass loss of the
red giant is via a stellar wind. Although the M giant companion to the neutron
star has a mass similar to the late-type star in low-mass X-ray binaries, its
near-solar abundances and apparent runaway velocity are not fully consistent
with the properties of this class of stars.Comment: In press to The Astrophysical Journal (10 April 2006 issue). 23 page
Chicken anaemia virus evades host immune responses in transformed lymphocytes
Chicken anaemia virus (CAV) is a lymphotropic virus that causes anaemia and immunosuppression in chickens. Previously, we proposed that CAV evades host antiviral responses in vivo by disrupting T-cell signalling, but the precise cellular targets and modes of action remain elusive. In this study, we examined gene expression in Marek’s disease virus-transformed chicken T-cell line MSB-1 after infection with CAV using both a custom 5K immune-focused microarray and quantitative realtime PCR at 24, 48 and 72 h post-infection. The data demonstrate an intricate equilibrium between CAV and the host gene expression, displaying subtle but significant modulation of transcripts involved in the T-cell, inflammation and NF-kB signalling cascades. CAV efficiently blocked the induction of type-I interferons and interferon-stimulated genes at 72 h. The cell expression pattern implies that CAV subverts host antiviral responses and that the transformed environment of MSB-1 cells offers an opportunistic advantage for virus growth
Synthesis and rotation barriers in 2, 6-Di-(o-anisyl) anisole
Variable temperature ¹H NMR spectroscopic studies of 2, 6-di(o-anisyl) anisole show syn and anti atropisomers at low temperature. The barrier for interconverting these isomers by rotation about the aryl-aryl bond, found by fitting the experimental data, is 41.2 kJ/mol
- …