259 research outputs found
Enhancement of the Binding Energy of Charged Excitons in Disordered Quantum Wires
Negatively and positively charged excitons are identified in the
spatially-resolved photoluminescence spectra of quantum wires. We demonstrate
that charged excitons are weakly localized in disordered quantum wires. As a
consequence, the enhancement of the "binding energy" of a charged exciton is
caused, for a significant part, by the recoil energy transferred to the
remaining charged carrier during its radiative recombination. We discover that
the Coulomb correlation energy is not the sole origin of the "binding energy",
in contrast to charged excitons confined in quantum dots.Comment: 4 Fig
Shake-up Processes in a Low-Density Two-Dimensional Electron Gas: Spin-Dependent Transitions to Higher Hole Landau Levels
A theory of shake-up processes in photoabsorption of an interacting
low-density two-dimensional electron gas (2DEG) in strong magnetic fields is
presented. In these processes, an incident photon creates an electron-hole pair
and, because of Coulomb interactions, simultaneously excites one particle to
higher Landau levels (LL's). In this work, the spectra of correlated charged
spin-singlet and spin-triplet electron-hole states in the first hole LL and
optical transitions to these states (i.e., shake-ups to the first hole LL) are
studied. Our results indicate, in particular, the presence of optically-active
three-particle quasi-discrete states in the exciton continuum that may give
rise to surprisingly sharp Fano resonances in strong magnetic fields. The
relation between shake-ups in photoabsorption of the 2DEG and in the 2D hole
gas (2DHG), and shake-ups of isolated negative X^- and positive X^+ trions are
discussed.Comment: 8 pages, 8 figures. References updated, one figure added (Fig. 6).
Accepted in Phys. Rev.
Manipulation of the Spin Memory of Electrons in n-GaAs
We report on the optical manipulation of the electron spin relaxation time in
a GaAs based heterostructure. Experimental and theoretical study shows that the
average electron spin relaxes through hyperfine interaction with the lattice
nuclei, and that the rate can be controlled by the electron-electron
interactions. This time has been changed from 300 ns down to 5 ns by variation
of the laser frequency. This modification originates in the optically induced
depletion of n-GaAs layer
Unintentional high density p-type modulation doping of a GaAs/AlAs core-multi-shell nanowire
Achieving significant doping in GaAs/AlAs core/shell nanowires (NWs) is of
considerable technological importance but remains a challenge due to the
amphoteric behavior of the dopant atoms. Here we show that placing a narrow
GaAs quantum well in the AlAs shell effectively getters residual carbon
acceptors leading to an \emph{unintentional} p-type doping. Magneto-optical
studies of such a GaAs/AlAs core multi-shell NW reveal quantum confined
emission. Theoretical calculations of NW electronic structure confirm quantum
confinement of carriers at the core/shell interface due to the presence of
ionized carbon acceptors in the 1~nm GaAs layer in the shell.
Micro-photoluminescence in high magnetic field shows a clear signature of
avoided crossings of the Landau level emission line with the Landau
level TO phonon replica. The coupling is caused by the resonant hole-phonon
interaction, which points to a large 2D hole density in the structure.Comment: just published in Nano Letters
(http://pubs.acs.org/doi/full/10.1021/nl500818k
Theory of neutral and charged exciton scattering with electrons in semiconductor quantum wells
Electron scattering on both neutral () and charged () excitons in
quantum wells is studied theoretically. A microscopic model is presented,
taking into account both elastic and dissociating scattering. The model is
based on calculating the exciton-electron direct and exchange interaction
matrix elements, from which we derive the exciton scattering rates. We find
that for an electron density of in a GaAs QW at ,
the linewidth due to electron scattering is roughly twice as large as
that of the neutral exciton. This reflects both the larger interaction
matrix elements compared with those of , and their different dependence on
the transferred momentum. Calculated reflection spectra can then be obtained by
considering the three electronic excitations of the system, namely, the
heavy-hole and light-hole 1S neutral excitons, and the heavy-hole 1S charged
exciton, with the appropriate oscillator strengths.Comment: 18 pages, 12 figure
Perception of clear fricatives by normal-hearing and simulated hearing-impaired listeners
This is the publisher's version, also available electronically from http://scitation.aip.org/content/asa/journal/jasa/123/2/10.1121/1.2821966.Speakers may adapt the phonetic details of their productions when they anticipate perceptual difficulty or comprehension failure on the part of a listener. Previous research suggests that a speaking style known as clear speech is more intelligible overall than casual, conversational speech for a variety of listener populations. However, it is unknown whether clear speech improves the intelligibility of fricative consonants specifically, or how its effects on fricative perception might differ depending on listener population. The primary goal of this study was to determine whether clear speech enhances fricative intelligibility for normal-hearing listeners and listeners with simulated impairment. Two experiments measured babble signal-to-noise ratio thresholds for fricative minimal pair distinctions for 14 normal-hearing listeners and 14 listeners with simulated sloping, recruiting impairment. Results indicated that clear speech helped both groups overall. However, for impaired listeners, reliable clear speech intelligibility advantages were not found for non-sibilant pairs. Correlation analyses comparing acoustic and perceptual data indicated that a shift of energy concentration toward higher frequency regions and greater source strength contributed to the clear speecheffect for normal-hearing listeners. Correlations between acoustic and perceptual data were less consistent for listeners with simulated impairment, and suggested that lower-frequency information may play a role
Binding Energy of Charged Excitons in ZnSe-based Quantum Wells
Excitons and charged excitons (trions) are investigated in ZnSe-based quantum
well structures with (Zn,Be,Mg)Se and (Zn,Mg)(S,Se) barriers by means of
magneto-optical spectroscopy. Binding energies of negatively () and positively
(X+) charged excitons are measured as functions of quantum well width, free
carrier density and in external magnetic fields up to 47 T. The binding energy
of shows a strong increase from 1.4 to 8.9 meV with decreasing quantum well
width from 190 to 29 A. The binding energies of X+ are about 25% smaller than
the binding energy in the same structures. The magnetic field behavior of and
X+ binding energies differ qualitatively. With growing magnetic field strength,
increases its binding energy by 35-150%, while for X+ it decreases by 25%.
Zeeman spin splittings and oscillator strengths of excitons and trions are
measured and discussed
Magnetic field dependence of the energy of negatively charged excitons in semiconductor quantum wells
A variational calculation of the spin-singlet and spin-triplet state of a
negatively charged exciton (trion) confined to a single quantum well and in the
presence of a perpendicular magnetic field is presented. We calculated the
probability density and the pair correlation function of the singlet and
triplet trion states. The dependence of the energy levels and of the binding
energy on the well width and on the magnetic field strength was investigated.
We compared our results with the available experimental data on GaAs/AlGaAs
quantum wells and find that in the low magnetic field region (B<18 T) the
observed transition are those of the singlet and the dark triplet trion (with
angular momentum ), while for high magnetic fields (B>25 T) the dark
trion becomes optically inactive and possibly a transition to a bright triplet
trion (angular momentum ) state is observed.Comment: 9 pages, 10 figures submitted to Phys. Rev.
Photoluminescence investigations of 2D hole Landau levels in p-type single Al_{x}Ga_{1-x}As/GaAs heterostructures
We study the energy structure of two-dimensional holes in p-type single
Al_{1-x}Ga_{x}As/GaAs heterojunctions under a perpendicular magnetic field.
Photoluminescence measurments with low densities of excitation power reveal
rich spectra containing both free and bound-carrier transitions. The
experimental results are compared with energies of valence-subband Landau
levels calculated using a new numerical procedure and a good agreement is
achieved. Additional lines observed in the energy range of free-carrier
recombinations are attributed to excitonic transitions. We also consider the
role of many-body effects in photoluminescence spectra.Comment: 13 pages, 10 figures, accepted to Physical Review
Negatively Charged Excitons and Photoluminescence in Asymmetric Quantum Well
We study photoluminescence (PL) of charged excitons () in narrow
asymmetric quantum wells in high magnetic fields B. The binding of all
states strongly depends on the separation of electron and hole layers.
The most sensitive is the ``bright'' singlet, whose binding energy decreases
quickly with increasing even at relatively small B. As a result, the
value of B at which the singlet--triplet crossing occurs in the spectrum
also depends on and decreases from 35 T in a symmetric 10 nm GaAs well
to 16 T for nm. Since the critical values of at which
different states unbind are surprisingly small compared to the well
width, the observation of strongly bound states in an experimental PL
spectrum implies virtually no layer displacement in the sample. This casts
doubt on the interpretation of PL spectra of heterojunctions in terms of
recombination
- …