10 research outputs found

    Isotopic and Geochemical Investigation of Two Distinct Mars Analog Environments Using Evolved Gas Techniques in Svalbard, Norway

    Get PDF
    The 2010 Arctic Mars Analog Svalbard Expedition (AMASE) investigated two distinct geologic settings on Svalbard, using methodologies and techniques to be deployed on Mars Science Laboratory (MSL). AMASErelated research comprises both analyses conducted during the expedition and further analyses of collected samples using laboratory facilities at a variety of institutions. The Sample Analysis at Mars (SAM) instrument suite on MSL includes pyrolysis ovens, a gas-processing manifold, a quadrupole mass spectrometer (QMS), several gas chromatography columns, and a Tunable Laser Spectrometer (TLS). An integral part of SAM development is the deployment of SAM-like instrumentation in the field. During AMASE 2010, two parts of SAM participated as stand-alone instruments. A Hiden Evolved Gas Analysis- Mass Spectrometer (EGA-QMS) system represented the EGA-QMS component of SAM, and a Picarro Cavity Ring Down Spectrometer (EGA-CRDS), represented the EGA-TLS component of SAM. A field analog of CheMin, the XRD/XRF on MSL, was also deployed as part of this field campaign. Carbon isotopic measurements of CO2 evolved during thermal decomposition of carbonates were used together with EGA-QMS geochemical data, mineral composition information and contextual observations made during sample collection to distinguish carbonates formation associated with chemosynthetic activity at a fossil methane seep from abiotic processes forming carbonates associated with subglacial basaltic eruptions. Carbon and oxygen isotopes of the basalt-hosted carbonates suggest cryogenic carbonate formation, though more research is necessary to clarify the history of these rocks

    COSPAR Sample Safety Assessment Framework (SSAF)

    Get PDF
    The Committee on Space Research (COSPAR) Sample Safety Assessment Framework (SSAF) has been developed by a COSPAR appointed Working Group. The objective of the sample safety assessment would be to evaluate whether samples returned from Mars could be harmful for Earth's systems (e.g., environment, biosphere, geochemical cycles). During the Working Group's deliberations, it became clear that a comprehensive assessment to predict the effects of introducing life in new environments or ecologies is difficult and practically impossible, even for terrestrial life and certainly more so for unknown extraterrestrial life. To manage expectations, the scope of the SSAF was adjusted to evaluate only whether the presence of martian life can be excluded in samples returned from Mars. If the presence of martian life cannot be excluded, a Hold & Critical Review must be established to evaluate the risk management measures and decide on the next steps. The SSAF starts from a positive hypothesis (there is martian life in the samples), which is complementary to the null-hypothesis (there is no martian life in the samples) typically used for science. Testing the positive hypothesis includes four elements: (1) Bayesian statistics, (2) subsampling strategy, (3) test sequence, and (4) decision criteria. The test sequence capability covers self-replicating and non-self-replicating biology and biologically active molecules. Most of the investigations associated with the SSAF would need to be carried out within biological containment. The SSAF is described in sufficient detail to support planning activities for a Sample Receiving Facility (SRF) and for preparing science announcements, while at the same time acknowledging that further work is required before a detailed Sample Safety Assessment Protocol (SSAP) can be developed. The three major open issues to be addressed to optimize and implement the SSAF are (1) setting a value for the level of assurance to effectively exclude the presence of martian life in the samples, (2) carrying out an analogue test program, and (3) acquiring relevant contamination knowledge from all Mars Sample Return (MSR) flight and ground elements. Although the SSAF was developed specifically for assessing samples from Mars in the context of the currently planned NASA-ESA MSR Campaign, this framework and the basic safety approach are applicable to any other Mars sample return mission concept, with minor adjustments in the execution part related to the specific nature of the samples to be returned. The SSAF is also considered a sound basis for other COSPAR Planetary Protection Category V, restricted Earth return missions beyond Mars. It is anticipated that the SSAF will be subject to future review by the various MSR stakeholders

    Metabolite cycling indicated by long-range correlation in a sediment bioreactor mixed microbial community

    No full text
    Geophysical surveys add value to biogeochemical studies because of their ability to characterize systems remotely, and their precise time resolution. One limitation, however, is their lack of biogeochemical process specificity. Here, electrochemical time series from an oxic-anoxic cyclical bioreactor experiment were reanalyzed with detrended fluctuation analysis (DFA) to distinguish dominant biogeochemical processes. Measurements of EH, pH, dissolved oxygen (DO) were recorded every 20 minutes for 74 days. The time series were divided by geochemical environment (aerobic respiration, NO3- reduction, mixed Fe(III), Mn(IV), SO42- reduction, and anoxic-oxic transition), and analyzed for correlation strength using DFA. Correlation strength varied systematically by environment over five oxic-anoxic cycles. This repetition makes it clear that electrode fluctuations are not random, nor are they noise. In fact, electrode fluctuations are a system-specific measurement of dominant geochemical conditions. The results of this study in a well-constrained environment with a complex microbial community support the potential to use galvanic and electrochemical approaches to remediation as a viable, cost-effective, and simple long-term monitoring strategy. The information provided by time series analysis requires no special sensors or additional data collection, just a short computational analysis for new, valuable information about ongoing geochemical reactions. This approach could be valuable in any application where remote, long-term monitoring of ongoing biogeochemical processes is desirable, such as agriculture, bioreactors, or in long-term remediation and monitoring programs where inexpensive, consistent data sets could provide valuable insight into degradation and environmental stability

    Controls on Barite Crystal Morphology during Abiotic Precipitation

    No full text
    Barite (BaSO4) is a stable and widely distributed mineral in Earth’s crust. As such, barite has the potential to preserve specific geochemical and morphological characteristics representative of conditions at the time of its formation, which could be useful for interpretations of Earth’s ancient rocks and paleoenvironments. In this study, we used variations in saturation index, solution temperature, solution chemistry, presence of organics, and Mg2+ and Ca2+ ions to investigate variations in barite crystal morphology. Through 42 experiments, we simulated poorly understood, low temperature spring settings similar to Zodletone Spring in Anadarko Basin, Oklahoma. Using SEM/EDS, we identified barite rosettes, rounded barite, euhedral/square-shaped barite, and elliptical barite as the crystal morphologies that directly reflect different formational settings. The X-ray diffraction (XRD) patterns revealed different crystallographic characters of the four distinct barite crystal morphologies; in particular, the samples that precipitated from supersaturated SrSO4 solution exhibited double peaks at 43° 2-Theta, which matched barite with strontium substitution as barite might have incorporated strontium in its structure. Barite crystals that formed in the presence of organics in the initial solution exhibited a double peak at 33° 2-Theta, which was absent in other samples. Confocal Raman microscopy indicated that all of the samples had typical barium sulfate bands, with a few differences in bands between the samples; for example, the 638 cm−1 band showed splitting or a double band between different samples. The samples that precipitated from solution with organics had organic compounds from the experimental solution included in their composition. In both cases, C⁻H stretches from 2800 cm−1 to 3000 cm−1 were present as well as bands from 1350 cm−1 to 1500 cm−1, which are typical of organic compounds. Based on our experiments, the variation in barite crystal morphologies reflected changes in initial solution chemistry (or environmental settings)

    Equatorial layered deposits in Arabia Terra, Mars: Facies and process variability

    No full text
    We investigated the equatorial layered deposits (ELDs) of Arabia Terra, Mars, in Firsoff crater and on the adjacent plateau. We produced a detailed geological map that included a survey of the relative stratigraphic relations and crater count dating. We reconstructed the geometry of the layered deposits and inferred some compositional constraints. ELDs drape and onlap the plateau materials of late Noachian age, while they are unconformably covered by early and middle Amazonian units. ELDs show the presence of polyhydrated sulfates. The bulge morphology of the Firsoff crater ELDs appears to be largely depositional. The ELDs on the plateau display a sheet-drape geometry. ELDs show different characteristics between the crater and the plateau occurrences. In the crater they consist of mounds made of breccia sometimes displaying an apical pit laterally grading into a light-toned layered unit disrupted in a meter-scale polygonal pattern. These units are commonly associated with fissure ridges suggestive of subsurface sources. We interpret the ELDs inside the craters as spring deposits, originated by fluid upwelling through the pathways likely provided by the fractures related to the crater formations, and debouching at the surface through the fissure ridges and the mounds, leading to evaporite precipitation. On the plateau, ELDs consist of rare mounds, flat-lying deposits, and cross-bedded dune fields. We interpret these mounds as possible smaller spring deposits, the flat-lying deposits as playa deposits, and the cross-bedded dune fields as aeolian deposits. Groundwater fluctuations appear to be the major factor controlling ELD deposition

    Characterization of the Organic Inventory of the Tissint Meteorite: Implications for Sample Return

    No full text
    International audienceWe report on the extensive analysis of the Martian meteorite fall Tissint. The inventory of organics material in the meteorites covers in-situ martian abiotic organics as well as terrestrial contamination. WE outline a procedure and protocols to assess martian return samples for the presence of life

    Recent geological and hydrological activity on Mars: The Tharsis/Elysium corridor

    No full text
    The paradigm of an ancient warm, wet, and dynamically active Mars, which transitioned into a cold, dry, and internally dead planet, has persisted up until recently despite published Viking-based geologic maps that indicate geologic and hydrologic activity extending into the Late Amazonian epoch. This paradigm is shifting to a water-enriched planet, which may still exhibit internal activity, based on a collection of geologic, hydrologic, topographic, chemical, and elemental evidences obtained by the Viking, Mars Global Surveyor (MGS), Mars Odyssey (MO), Mars Exploration Rovers (MER), and Mars Express (MEx) missions. The evidence includes: (1) stratigraphically young rock materials such as pristine lava flows with few, if any, superposed impact craters; (2) tectonic features that cut stratigraphically young materials; (3) features with possible aqueous origin such as structurally controlled channels that dissect stratigraphically young materials and anastomosing-patterned slope streaks on hillslopes; (4) spatially varying elemental abundances for such elements as hydrogen (H) and chlorine (Cl) recorded in rock materials up to 0.33 m depth; and (5) regions of elevated atmospheric methane. This evidence is pronounced in parts of Tharsis, Elysium, and the region that straddles the two volcanic provinces, collectively referred to here as the Tharsis/Elysium corridor. Based in part on field investigations of Solfatara Crater, Italy, recommended as a suitable terrestrial analog, the Tharsis/Elysium corridor should be considered a prime target for Mars Reconnaissance Orbiter (MRO) investigations and future science-driven exploration to investigate whether Mars is internally and hydrologically active at the present time, and whether the persistence of this activity has resulted in biologic activity. © 2008 Elsevier Ltd. All rights reserved
    corecore