
Icarus xxx (2012) xxx–xxx

https://ntrs.nasa.gov/search.jsp?R=20140008913 2019-08-31T20:24:37+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server
Contents lists available at SciVerse ScienceDirect

Icarus

journal homepage: www.elsevier .com/locate / icarus
Isotopic and geochemical investigation of two distinct Mars analog
environments using evolved gas techniques in Svalbard, Norway

Jennifer C. Stern a,⇑, Amy C. McAdam a, Inge L. Ten Kate a,b, David L. Bish c, David F. Blake d,
Richard V. Morris e, Roxane Bowden f, Marilyn L. Fogel f, Mihaela Glamoclija f, Paul R. Mahaffy a,
Andrew Steele f, Hans E.F. Amundsen g

a Planetary Environments Laboratory, Code 699, NASA Goddard Space Flight Center, Greenbelt, MD 20910, USA
b Centre for Physics of Geological Processes, University of Oslo, 0316 Oslo, Norway
c Department of Geological Sciences, Indiana University, Bloomington, IN 47405, USA
d Exobiology Branch, MS 239-4, NASA Ames Research Center, Moffett Field, CA 94035, USA
e Astromaterials Branch, NASA Johnson Space Center, Houston, TX 77058, USA
f Geophysical Laboratory, Carnegie Institute of Washington, Washington, DC 20015, USA
g Earth and Planetary Exploration Services, Oslo, Norway

a r t i c l e i n f o
Article history:
Available online xxxx
0019-1035/$ - see front matter Published by Elsevier
http://dx.doi.org/10.1016/j.icarus.2012.07.010

⇑ Corresponding author. Fax: +1 301 614 6406.
E-mail address: Jennifer.C.Stern@nasa.gov (J.C. Ste

Please cite this article in press as: Stern, J.C., et
techniques in Svalbard, Norway. Icarus (2012),
a b s t r a c t

The 2010 Arctic Mars Analog Svalbard Expedition (AMASE) investigated two distinct geologic settings on
Svalbard, using methodologies and techniques to be deployed on Mars Science Laboratory (MSL). AMASE-
related research comprises both analyses conducted during the expedition and further analyses of col-
lected samples using laboratory facilities at a variety of institutions. The Sample Analysis at Mars
(SAM) instrument suite on MSL includes pyrolysis ovens, a gas-processing manifold, a quadrupole mass
spectrometer (QMS), several gas chromatography columns, and a Tunable Laser Spectrometer (TLS). An
integral part of SAM development is the deployment of SAM-like instrumentation in the field. During
AMASE 2010, two parts of SAM participated as stand-alone instruments. A Hiden Evolved Gas Analy-
sis-Mass Spectrometer (EGA-QMS) system represented the EGA-QMS component of SAM, and a Picarro
Cavity Ring Down Spectrometer (EGA-CRDS), represented the EGA-TLS component of SAM. A field analog
of CheMin, the XRD/XRF on MSL, was also deployed as part of this field campaign. Carbon isotopic
measurements of CO2 evolved during thermal decomposition of carbonates were used together with
EGA-QMS geochemical data, mineral composition information and contextual observations made during
sample collection to distinguish carbonates formation associated with chemosynthetic activity at a fossil
methane seep from abiotic processes forming carbonates associated with subglacial basaltic eruptions.
Carbon and oxygen isotopes of the basalt-hosted carbonates suggest cryogenic carbonate formation,
though more research is necessary to clarify the history of these rocks.

Published by Elsevier Inc.
1. Introduction

Terrestrial analogs of Mars and other planetary bodies provide a
valuable opportunity for studying environments and processes
inaccessible to us due the remote nature of these places (Léveillé,
2009). Additionally, these places are testing and proving grounds
for scientific instrumentation to be deployed on planetary mis-
sions. Mars analog studies have been conducted in the Atacama
and Mojave Deserts, lakes in Antarctica, and the Rio Tinto river in
Spain (Bishop et al., 2001, 2011; Fernandez-Remolar et al., 2005;
Navarro-Gonzalez et al., 2004, 2003). These different sites are
analogous to environments on Mars at various points in its
Inc.
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environmental and geological history. These studies have revealed
much regarding the form that life might have taken in analogous
Mars environments, and the limits of habitability. But they have
also been used to test instrumentation and interpret results of mis-
sions (e.g. Viking, (Navarro-Gonzalez et al., 2010).

The Arctic Mars Analog Svalbard Expedition (AMASE) has been
funded by NASA’s Astrobiology Science and Technology for Explor-
ing Planets (ASTEP) Program to study Mars analog sites on Spits-
bergen Island, Svalbard, Norway since 2003. Svalbard is an island
archipelago with a range of geochemical conditions and geological
formations. Some of the most studied of these formations are car-
bonate-encrusted volcanic vents hosting carbonates that bear a
striking resemblance to the carbonate globules in martian meteor-
ite ALH84001. These carbonates are thought to have been depos-
ited in association with subglacial basaltic volcanism (Steele
nvestigation of two distinct Mars analog environments using evolved gas
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Table 1
AMASE 2010 instrument payload.

Instrument Team Capability

CheMin Blake/
Morris

Powder XRD and XRF

CLUPI Josset/
Josset

Imaging, high resolution

MOMA Philippon/
Steinmetz

Gas chromatography

PanCam Schmitz/
Cousins/
Bauer

Imaging, panoramic, stereo, and
multispectral

Compass Raman
spectrometer,
portable LIBS

Sansano/
Lopez

Raman spectrometer, laser induced
breakdown spectroscopy

SAM Stern/
McAdam

Evolved Gas Analysis Mass
Spectrometry (EGA-MS), d13C via
Cavity Ring Down Spectroscopy
(CRDS)

SPDS crushing station Viscor Sample preparation, rock crusher
VAPoR Ten Kate Pyrolysis mass spectrometry
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et al., 2007; Treiman et al., 2002). Such processes have been envi-
sioned on Mars to invoke the presence of liquid water and subse-
quent precipitation of carbonate cements, e.g. Comanche
carbonates discovered from MER (A) data in Morris et al. (2010,
2011).

The past several AMASE campaigns have assembled an interna-
tional team with a powerful suite of instruments to simulate meth-
odologies and techniques in use or development for existing or
proposed Mars landed missions such as Mars Science Laboratory
(MSL), ExoMars, and Mars Sample Return (MSR). Using the capabil-
ities a rover with these instruments would have, the AMASE team
makes geochemical, mineralogical, and biological measurements
in the field. After the field campaign, the same samples are ana-
lyzed by state of the art technology at the given instrument’s home
institution to ground truth field measurements. Some experiments
are direct life detection experiments, but most address character-
ization of habitability and biosignatures. Because this is an
astrobiology study, the emphasis is placed on the question of
whether the AMASE instrument suite can distinguish biological
from abiotic processes at these Mars analog sites.

Relative to its earlier campaigns, AMASE 2010 had a new field
capability to assist in this mission – the ability to measure the car-
bon stable isotopic composition (d13C) of solid materials using
evolved gas analysis and custom front end coupled with a commer-
cially available Cavity Ring Down Spectrometer (Picarro CO2 Iso-
tope Analyzer). Stable isotopes are powerful tracers of biological
and geochemical processes on Earth. The magnitude and the direc-
tion (positive or negative) of isotopic fractionation between differ-
ent isotopes of the same element can fingerprint the source and
mechanism associated with its transformation. For example, pho-
tosynthesis leads to preferential enrichment of the light isotope
of carbon (i.e., 12C) in its products, resulting in negative d13C values
relative to atmospheric CO2 (Farquhar et al., 1989; Hayes, 1993;
Hoefs, 1980). In contrast, the precipitation of carbonate results in
a positive fractionation with respect to the atmosphere. This is
why organics associated with biological processes on Earth have
d13C values distinct from those of atmospheric and geological car-
bon reservoirs.

It is plausible that similar fractionation between biological and
geological carbon could occur on Mars. Although the pathways and
mechanisms for the cycling of carbon on Mars are largely un-
known, any life would require exchange of energy and resources
with its environment. The chemical reactions governing that ex-
change are likely to be based on universal laws of physics, in which
different isotopic species have different reaction rates related to
their Gibbs Free Energy (O’Neil, 1986). Thus, metabolic processing
of carbon on Mars should produce isotopic fractionation analogous
to the kinetic isotope effect induced by enzyme-mediated carbox-
ylation to assimilate CO2, producing changes in 13C/12C that can be
traced in the sedimentary record (Schidlowski, 1992). There are
caveats associated with using d13C as a biosignature, particularly
studies in the past 10 years showing that organic carbon com-
pounds produced by abiotic processes may have the same 13C frac-
tionation as biologic carbon (e.g. McCollom and Seewald, 2006).
Studies to determine sources of methane in hydrothermal environ-
ments on Earth (e.g. Lost City Hydrothermal System) have shown a
wide range of d13C values for abiotic methane that overlap biolog-
ically and thermogenically produced methane (Proskurowski et al.,
2006; Sherwood-Lollar et al., 2008). Hydrothermal activity has
been suggested to have occurred on Mars (Schulze-Makuch et al.,
2007), such as that induced by impacts early in its history
(Abramov and Kring, 2005) and could therefore have been a source
of abiotic fractionation on Mars as well. In addition, abiotic organ-
ics with d13C = �5‰ to �20‰ from carbonaceous chondrites are
likely to be present on the martian surface (Huang et al., 2005;
Sephton et al., 2003). Thus, discovery of 13C-depleted carbon,
Please cite this article in press as: Stern, J.C., et al. Isotopic and geochemical i
techniques in Svalbard, Norway. Icarus (2012), http://dx.doi.org/10.1016/j.icar
particularly when not in context with the inorganic carbon source
(e.g. contemporaneous carbonates) does not alone indicate biolog-
ical activity. Nevertheless, because of their potential as biosigna-
tures, stable isotope compositions of Mars atmosphere and
surface materials are high priority measurements as defined by
the Mars Exploration Program Assessment Group (MEPAG Science
Goals, Objectives, Investigations, and Priorities: 2010) as well as
the National Academies Planetary Science Decadal Survey Report
for 2013–2022 (2011).

We know relatively little about the isotopic composition of car-
bon on Mars, although detailed isotopic studies of carbonates in
martian meteorites of different ages may help to interpret future
in situ isotopic measurements of carbonates in regolith. The d13C
of modern atmospheric CO2 on Mars, as measured by Mars Phoenix
(Niles et al., 2010) is thought to be lighter than CO2 on ancient Mars,
assuming the atmospheric reservoir of CO2 is recorded in carbonate
from martian meteorites. The oldest meteorites have the heaviest
d13C, suggesting atmospheric loss of 12C on early Mars (Carr et al.,
1985; Jakosky, 1999; Jull et al., 1997; Wright et al., 1988). Together,
the discovery of temporal variations of methane on Mars (Mumma
et al., 2009; Villanueva et al., 2009) and the identification of carbon-
ates by Phoenix, CRISM, TES, and mini-TES (Boynton et al., 2009;
Ehlmann et al., 2008; Morris et al., 2010), suggest that at least 3 car-
bon species exist on Mars (CO2, CH4, and carbonates). d13C measure-
ments of these three reservoirs are achievable with the MSL
instrument suite, as well as d13C of organic carbon, should it be
present. While these values alone will be difficult to interpret with-
out contextual information, the instrument suite on MSL is capable
of obtaining mineralogical and geochemical data along with high-
resolution imaging that may provide a framework for the interpre-
tation of isotopic data.
1.1. Brief overview of the AMASE 2010 campaign

The 2010 AMASE campaign was based in Ny Ålesund, the north-
ernmost permanently inhabited community in the world at
78�550N 11�560E, and carried an unprecedented array of instrumen-
tation for geochemical characterization, life detection, and high res-
olution imaging of the Mars analog field sites. The 2010 campaign
was comprised of 33 people and 8 instruments (Table 1): SAM
(Mahaffy, 2008), CheMin (Blake et al., 2010), PanCam (Amundsen
et al., 2010), MOMA (Goetz et al., 2011), Raman/LIBS (Rull et al.,
2011), SPDS Rock Crusher, CLUPI (Josset et al., 2011), and VAPoR
(ten Kate et al., 2010). This year’s campaign focused on two sites,
described below. These sites were visited by a small team of field
nvestigation of two distinct Mars analog environments using evolved gas
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scientists who imaged the sites using PanCam and took field notes.
This team collected a range of samples that were further imaged
using CLUPI. The samples were then brought back to Ny Ålesund
and presented to the Ny Ålesund-based scientists who decided
which samples to analyze based on the PanCam and CLUPI imaging,
field notes, and scientific priority. Samples designated for analysis
were either crushed with the SPDS Rock Crusher (an engineering
model of the rock crusher designed for the ExoMars mission),
crushed manually using a mortar and pestle, or removed from a sur-
face or interface using a dremel tool, and subsequently distributed
to the SAM, CheMin, MOMA, and VAPoR instruments.

1.2. Mars Science Laboratory

Our approach focuses on evaluating the capability of a subset of
instrumentation that will fly on the Mars Science Laboratory (MSL),
‘‘Curiosity,’’ to characterize two distinct environments, with the
intention of distinguishing geochemical and biogeochemical pro-
cesses. MSL will land on Mars in August 2012 and deploy a diverse
instrument payload that will perform chemical, isotopic, and miner-
alogical analyses to assess the past and present potential habitability
of a target environment on Mars. Our field instrumentation repre-
sents custom modification of commercially available instruments to
simulate several capabilities of Sample Analysis at Mars (SAM, PI
Mahaffy; Mahaffy, 2008; Mahaffy et al., 2012), and the Chemistry
and Mineralogy (CheMin, PI Blake; Blake et al., 2010) experiment.

SAM (Mahaffy et al., 2012) consists of a quadrupole mass spec-
trometer (QMS), a gas chromatograph (GC), and a tunable laser
mass spectrometer (TLS), all of which analyze gases evolved during
pyrolysis or combustion of surface materials. SAM’s pyrolysis
ovens will heat samples to �1000 �C with helium carrier gas. The
evolved gas may be sampled directly by the QMS, or it may be rou-
ted to a hydrocarbon trap, one of six gas chromatography columns,
or the TLS, for isotopic analysis (Mahaffy et al., 2012; Webster,
2005; Webster and Mahaffy, 2011). In support of SAM, an array
of laboratory work with relevant Mars analog materials is being
carried out at NASA’s Goddard Space Flight Center (GSFC).

CheMin is an X-ray Diffraction (XRD) and X-ray Fluorescence
(XRF) instrument that will measure the mineralogical (quantita-
tive) and elemental (qualitative) composition of powdered rock or
soil samples, which will help characterize the environmental and
geological context of the setting. CheMin detection limits are stated
to be better than 3% by mass, an accuracy of better than 15% and a
precision of better than 10% of the amount present for phasespres-
ent in concentrations >4X the minimum detection limit (12%)
(Blake et al., 2010). CheMin and SAM EGA-QMS experiments are
complementary, as identifying gases evolved from thermal decom-
position of samples can help fingerprint mineral phases.

This paper focuses on how the solid sample analysis capabilities
characteristic of SAM and CheMin, were used to address the origin
of carbon of two distinct analog environments. We present data col-
lected using a subset of the capabilities available on MSL, focusing
on SAM evolved gas analysis, SAM TLS analysis of CO2 from carbon-
ates, and bulk mineralogical data from CheMin. Both EGA-QMS and
CheMin provide mineralogical and environmental context crucial
for interpretation of isotope data. Here we present mineralogical,
geochemical, and carbon isotopic evidence of possible relict biolog-
ical activity at a fossil methane seep, as well as abiotic carbonate
formation through hydrothermal mechanisms at two separate sites
on Spitsbergen Island, Svalbard, using methods analogous to those
available on the SAM instrument suite and the CheMin experiment
on the Mars Science Laboratory ‘‘Curiosity.’’ Our results are compa-
rable to measurements made by laboratory isotope ratio mass spec-
trometry (IRMS) and demonstrate the utility of stable isotopes as
tracers of relict biological activity when coupled with contextual
mineralogical and environmental information.
Please cite this article in press as: Stern, J.C., et al. Isotopic and geochemical i
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1.3. Site description

Two sites on Spitsbergen Island, the largest of the islands com-
prising the Svalbard Archipelago, were chosen for their potential
similarity to environments that may once have existed on Mars.
Sigurdfjell is part of the Quaternary Bockfjorden Volcanic Complex
(BVC) characterized by coarse pyroclastics, mantle xenoliths, and
volcanic vents (Skjelkvale et al., 1989). These basalts were erupted
into a thick ice cap 1 Ma ago. The vents are encrusted with carbon-
ates that are suggested to have been precipitated from hydrother-
mal waters (Treiman et al., 2002). These carbonates have been
found in globules very similar to carbonate globules in martian
meteorite ALH84001, also formed by aqueous processes (Halevy
et al., 2011; Niles et al., 2009; Steele et al., 2007). Another similar-
ity to Mars geology is inherent in the formation of the Sigurdfjell
volcanic rocks by direct eruption into ice, similar to putative volca-
nism on Mars, which would have melted ice and enabled hydro-
thermal systems (Chapman and Tanaka, 2002; Edwards et al.,
2009; Hamilton et al., 2011).

The fossil methane seeps at Knorringfjell are comprised of
Jurassic marine shale and carbonate mounds. These seeps, which
are close to the Jurassic–Cretaceous boundary in age, are part of
the Slottsmøya Member of the Agardhfjellet Formation, a well-
studied sedimentary body deposited under open marine shelf con-
ditions spanning 20 myr (e.g. Dypvik et al., 1991a, 1991b; Hammer
et al., 2011; Nagy and Basov, 1998). The Slottsmøya Member is
characterized by black mudstones containing macroscopic fossils
of benthic organisms along with siderite and dolomite cements
(Hammer et al., 2011; Krajewski, 2004; Nakrem et al., 2010). The
petrography of seep carbonates has been well characterized, and
these samples contain a heterogeneous mixture of black micrite,
fossil-rich wackestone, brown to yellow calcite crusts, fibrous cal-
cite, and calcite spar (Hammer et al., 2011).

Massive carbonates have not been identified on the martian
surface, and acidic conditions thought to be present in the Noa-
chian would preclude their formation (Fairen et al., 2005). How-
ever, shallow marine sediments associated with methane seeps
representing chemolithotrophic ecosystems, such as those present
in fossilized form at Knorringfjell, are an analog for one possible
biological community that may have been preserved in shallow
marine sediments during the Noachian on Mars (Fairen et al.,
2005; Komatsu and Ori, 2000; Parnell et al., 2002). Fossil methane
seeps have also been associated with the presence of methane hy-
drates, which have been suggested as sources of methane to the
martian atmosphere (Komatsu et al., 2011). In addition, landforms
on the martian surface have been interpreted as mud volcanoes,
and terrestrial mud volcanoes are often associated with pressur-
ized methane gas (Pondrelli et al., 2011).
2. Methods and procedure

2.1. Sample collection and preparation

Samples were collected at the field sites to the highest stan-
dards of organic cleanliness possible, using a rock hammer to break
rocks to expose a fresh surface, collection with gloves, and imme-
diate storage of sample in ashed (500 �C overnight) aluminum foil.
At Knorringfjell, samples were collected from float (surface rocks
assumed to have been broken off from the local host bedrock).
For Terra analyses, sample chunks were crushed using the proto-
type SPDS Rock Crusher. In between samples, fused silica was pro-
cessed through the rock crusher to remove the previous sample
and prevent cross contamination. Samples were then ground to a
powder of �150 lm consistent with the grain size that the Sample
Acquisition, Processing, and Handling (SA/SPaH) subsystem will
nvestigation of two distinct Mars analog environments using evolved gas
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deliver to SAM and CheMin on MSL. For the SAM-like EGA-QMS
and isotopic analyses, sample chips were hand-ground to a powder
using an agate mortar and pestle to avoid possible organic contam-
ination from the SPDS Rock Crusher. The CLose Up Imager (CLUPI)
team provided context imagery for samples.

2.2. Remote laboratory/field instrumentation

During AMASE 2010, a Terra XRD/XRF (analogous to CheMin)
and two components of SAM were deployed as stand-alone instru-
ments in a remote temporary laboratory at Ny Ålesund. An in-
house pyrolysis oven coupled with a Hiden Analytical HPR-20
quadrupole mass spectrometer (Fig. 1) represented the EGA-QMS
component of SAM, and a Picarro Cavity Ring Down CO2 Isotope
Analyzer (hereafter referred to as the CRDS, Fig. 2), represented
the TLS component of SAM (McAdam et al., 2011; Stern et al.,
2011). The Picarro Cavity Ring Down CO2 Isotopic Analyzer is a
commercial instrument designed to continuously monitor atmo-
spheric concentrations of CO2 at atmospheric pressure. The preci-
sion for the d13C measurement of ambient CO2 (1-r precision is
<0.3‰ during over a 1 h window) is analogous to that of the Tun-
able Laser Spectrometer (TLS) on SAM (Webster and Mahaffy,
2011). An InXitu Terra instrument, a portable version of the Che-
Min XRD/XRF instrument developed for use in the field (Blake,
pyroly
oven
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Gas manifold

Fig. 1. Hiden Analytical HPR-20 quadrupole mass spectrometer system with pyrolysis o
capture CO2 thermally evolved from carbonates.
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2010) was used to obtain bulk mineralogy of samples. All measure-
ments were made in a temporary remote laboratory set up in Ny
Ålesund. d13C measurements on an isotope ratio mass spectrome-
ter (IRMS) were done at the Carnegie Institution of Washington
and NASA Goddard Space Flight Center.

2.2.1. Terra XRD/XRF
Several iterations of field portable CheMin prototypes have

been deployed during past AMASE campaigns (Bish et al., 2007).
Mini-CheMin was the first portable XRD/XRF system with both
the hardware and software necessary to make mineralogical anal-
ysis quickly and efficiently in the field (Blake, 2010). A commercial
XRD/XRF instrument based on the mini-CheMin platform, called
Terra (http://www.inxitu.com/html/Terra.html), was developed
by InXitu, Inc. (Blake, 2010). A Terra XRD/XRF instrument was used
during the AMASE 2010 campaign to measure bulk mineralogy of
fine grained (<150 lm) powders or fractions of analog samples.
Terra uses Co Ka radiation and produces XRD patterns with a 2h
range of 2–55� and a 2h resolution of 0.25� FWHM. The XRF energy
range is 3–25 keV with an energy resolution of 200 eV at 5.9 keV.
Terra has been shown to produce XRD data comparable in quality
with laboratory XRD data (Treiman et al., 2010). Mineral identifica-
tions were determined by comparison of measured XRD patterns
with standard patterns in the ICDD database, and mineral
sis
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Fig. 3. Cavity Ring Down Spectrometers (CRDSs) measure the decay of light in the
presence and absence of a gas of interest and translate this to gas concentration
(figure used with permission from www.picarro.com). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)
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abundances were derived by Rietveld refinement (e.g., Bish and
Post, 1993; Chipera and Bish, 2002). The InXitu Terra has a mini-
mum detection limit of 1 wt% (Treiman et al., 2010), although it
may be considerably larger for poorly ordered (e.g., clay minerals)
and amorphous materials (Blake, 2010; Blake et al., 2010, 2009).

2.2.2. EGA-QMS
The composition of evolved gases and the temperature of gas

evolution can provide additional constraints on sample mineralogy
and organic chemical characteristics. After initial analysis by Terra
of a separate sample split, 5-10 mg of sample was loaded into the
EGA-MS pyrolysis oven and helium carrier gas pressures and gas
flow conditions similar to SAM (�0.027 atm-cc/sec) were estab-
lished (McAdam et al., 2011). The sample was then heated from
�50 �C to �950 �C at a ramp rate of 20 �C/min and evolved gases
were monitored by the QMS. The QMS mass range is 1–300 Da,
but a ‘‘peak hopping’’ mode was utilized, in which several Da val-
ues of interest were monitored to achieve higher time sampling.
Key Da values monitored were 45 (indicating CO2 detection), 20
(water detection), 66 (SO2 detection), 78 (organic, benzene, frag-
ment detection), 39 and 41 (organic, alkane, fragment detection),
and 15 (methane detection).

2.2.3. EGA-CRDS
For EGA-CRDS runs, mass 45 was monitored for the onset of

peaks in CO2 evolution resulting from carbonate decomposition;
the temperature at which this peak onset occurs is dependent on
carbonate mineralogy. EGA-CRDS runs took place after EGA-QMS
runs of the same sample, where peak onset temperature was deter-
mined and a semi-quantitative assessment of how much CO2 was
generated by EGA of the sample was made. During EGA-CRDS runs,
upon mass 45 peak onset, a valve to an evacuated 1 L cylinder was
opened and CO2 was captured as it was evolved from the sample,
then subsequently backfilled with N2 to 1–2 bar to obtain CO2 con-
centration and gas mixture pressure in the operating range of the
Picarro CRDS (e.g. �1 bar, 250–1000 ppm CO2 in air). In the field,
semi-quantitative assessment of CO2 concentration in the 1 L cylin-
der was based on peak height and area of the mass 45 trace pro-
duced during EGA-QMS compared to runs with 4 mg pure calcite
standard, and Terra data on carbonate concentration of a given
sample. A Valedyne gauge and Baritron gauges also monitored sys-
tem pressure. This information allowed determination of the
appropriate amount of N2 to backfill the tank achieve CO2 concen-
trations within the Picarro operating range of 250–1000 ppm.
Because nitrogen was used as the balance gas (due to availability
at the field site), and the Picarro unit is factory calibrated for CO2

in zero air (air purified to remove CO2 and hydrocarbons), all
samples were calibrated against CO2 generated by EGA of a calcite
standard of known isotopic composition and a gas mixture
standard comprised of 500 ppm CO2 in N2.

The filled cylinder was moved from the Hiden manifold to
the CRDS manifold, which had been purged with N2 and evacu-
ated. Occasionally, a sample produced CO2 in concentrations
exceeding the operational limits of the Picarro CRDS. In these
cases, expansion into an additional volume and addition of N2

to dilute the CO2 concentration was necessary. Before introduc-
ing gas to the Picarro CRDS, the cylinder was opened into the
manifold and gas flowed into a Teflon gas-sampling bag (Jensen
Inert Products). When the pressure in the manifold equalized,
the valve to the CRDS was opened and gas flowed from the
bag into the CRDS at constant pressure of 1 bar. d13C measure-
ments using this method were taken after 2 min of sample
equilibration, and averaged over 5 min, and generally had 1-r
precision of 2‰ or better.

Commercial benchtop Cavity Ring Down Spectroscopy (CRDS)
instrumentation for carbon isotopic analysis has become readily
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available in the past 5 years. These commercial CRDS CO2 isotope
analyzers (e.g., Picarro, Los Gatos Research) are designed to mea-
sure the concentration and isotopic composition of atmospheric
CO2. Briefly, CRDS measures the rate of decay of light intensity of
a laser beam inside a cavity in the absence and presence of gas
of interest (Fig. 3). The decay constant, or ring-down time, s, de-
scribes the optical losses due to cavity mirrors and absorption
and scattering of the sample gas, and translates into concentration
measurements of gas species with absorbances in the chosen
wavelength range (Crosson, 2008; Paldus and Kachanov, 2005).

While the CRDS is an approximation of the ability of TLS to mea-
sure the concentration and d13C of CO2, the two instruments have
different operational ranges. The TLS on SAM is a flight instrument
designed to measure small concentrations of gas at lower pres-
sures, and therefore does not require any backfilling steps. If too
much gas is produced during an SAM-EGA-TLS experiment on
Mars, it can be pumped out of the TLS Herriot Cell to reduce the
pressure to optimize the measurement. Despite these differences,
our system provides a way to measure d13C of samples in remote
settings using absorption spectroscopy-based methods similar to
the TLS on SAM.
2.3. Isotope ratio mass spectrometry (IRMS)

To ground truth EGA-CRDS isotopic measurements, isotope ra-
tio mass spectrometry (IRMS) was performed at the Geophysical
Laboratory at Carnegie Institute of Washington. Powdered samples
were analyzed via acid dissolution on a Thermo Finnegan Gas
Bench II coupled to a Thermo Quest Finnigan Delta Plus XL IRMS
and by combustion on a Carlo Erba NC 2500 Elemental Analyzer
(EA) coupled to a Thermo Scientific Delta V Plus. The values for
each gas bench sample represent an average of seven aliquots of
headspace CO2 with standard deviations of �0.4‰ (n = 7) for both
carbon and oxygen. Precision for EA-IRMS measurements is based
on reproducibility of NIST standards NBS-18, NBS-19, and Iso-Ana-
lytic standard RO22, giving typical 1-r of �0.25‰.

Although our field system did not enable measurement of d18O
in CO2 evolved from carbonates, the SAM flight unit will have this
capability. Thus, we report d18O values obtained after the field
campaign by gas bench-IRMS, bearing in mind that the SAM TLS
flight instrument is capable of precisions of 3‰ for d18O in CO2

(Webster and Mahaffy, 2011). Both carbon and oxygen isotopic
values are reported relative to Pee Dee Belemnite (PDB).
nvestigation of two distinct Mars analog environments using evolved gas
us.2012.07.010

http://www.picarro.com
http://dx.doi.org/10.1016/j.icarus.2012.07.010


Table 2
Bulk mineralogy and qualitative elemental data from Terra XRD/XRF.

Sample ID Sample description Terra XRD

Knorringfjell
AM10-05-GM Green mudstone, outside 70% Mg-calcite

19% Muscovite
11% Quartz

AM10-05-WL White crystalline 99% Low-Mg-calcite
1% Dolomite

AM10-05-BM Black mudstone, interior 94% Low-Mg calcite
6% Dolomite

AM10-13-M Black micrite, exterior 81% Calcite
19% Quartz

Sigurdfjell
AM10-27-CB Carbonate/basalt interface 66% Dolomite

13% Augite
7% Plagioclase
5% Aragonite
4% Goethite
5% Low-Mg-calcite

AM10-27-CS Surface of carbonate crust 95% Dolomite
3% Goethite
1% Aragonite
1% Mg-calcite

AM10-27-CI Internal carbonate 76% Aragonite
21% Dolomite
1% Calcite
3% Goethite

AM10-27-B Basalt 44% Augite
27% Fe-forsterite
26% Na–Ca plagioclase
2% Biotite
Trace Mg calcite and dolomite
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3. Results

3.1. Bulk mineralogy

An array of contextual samples from each field site (Fig. 4) was
analyzed for mineralogy and elemental content by Terra. Results
show that the mineralogy of Knorringfjell samples is dominated
by low to mid Mg-calcite, with some quartz and dolomite, whereas
the Sigurdfjell carbonate samples are predominantly dolomite or
aragonite (Table 2). XRD patterns acquired from the Knorringfjell
green mudstone lithology (AM10-05-GM) and the Sigurdfjell sur-
face carbonate crust (AM10-05-CS), are shown in Fig. 5a and b.
These patterns illustrate the overall differences in carbonate min-
eralogy between the two sites, with the Knorringfjell green lithol-
ogy dominated by calcite and the Sigurdfjell surface carbonate
crust dominated by dolomite, and show quality of data that can
be obtained with the Terra instrument. This difference in carbonate
mineralogy can be attributed to differences between the character-
istics of the depositional environment recorded in the Upper Juras-
sic/Cretaceous shallow marine carbonates at Knorringfjell and the
carbonates precipitated in the Quaternary hydrothermal system
associated with the subglacial basaltic volcanism at Sigurdfjell.

Knorringfjell samples are generally low to mid-Mg calcite car-
bonates, but some dolomite is present, particularly in the black
mudstone lithology (AM10-05-BM). This is consistent with the
findings of other groups who have studied this site, who find trace
dolomite inside peloids thought to be associated with localized
bacterial fermentation of organic matter below the sulfate reduc-
tion zone (Hammer et al., 2011). Also notable is �20% muscovite
in the green mudstone lithology. We did not see evidence of phyl-
losilicate decomposition in the 20 Da (H2O) EGA-QMS trace from
this sample, but this could be due to our relatively high H2O back-
ground during this sample run in the field and/or some differences
in mineralogy between the split of sample provided to the CheMin
team vs. the split provided to the SAM team.

The composition of Sigurdfjell samples reflected minerals asso-
ciated with basaltic igneous rocks. Sample AM10-23-B was charac-
terized by augite, fosteritic olivine, and Na–Ca plagioclase,
consistent with basalt. Some trace Mg-calcite and dolomite were
detectable, as vesicles in basalt had been filled with carbonate ce-
ments. It is interesting to note that the carbonate crust, or rind, had
detectable variations from the carbonate/basalt interface (AM10-
27-CB) to the surface of the carbonate crust (AM10-27-CS). Internal
carbonates (AM10-27-CI) were distinctively more aragonite rich
(76% aragonite, 21% dolomite) than either the carbonate basalt
interface (66% dolomite, 5% aragonite, 5% low Mg-calcite) or the
exterior surface of the carbonate crust (95% dolomite, 1% arago-
nite). As these samples were collected by dremelling each layer,
b 
a 

c 

Fig. 4. Left: Knorringfjell sample with (a) black mudstone (AM10-05-BM), (b) green mu
(AM10-13-M) sample from Knorringfjell. Right: Sigurdfjell sample with (e) external carb
interface cement (AM10-27-CB), and (h) basalt (AM10-27-B). (For interpretation of the re
article.)
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spatial resolution was not high, but approximated what could be
achieved on a robotic rover. Nonetheless, sample heterogeneity is
not a sufficient explanation for the gradation in carbonate mineral-
ogy. Finally, all 3 carbonate samples had 3–4% goethite, which is
consistent with basalt weathering.

3.2. Evolved Gas Analysis

Because of the limitations of time and resources during the field
study, which was meant to impose limitations similar to those
encountered on a Mars rover, four samples from Knorringfjell
and four samples from Sigurdfjell were analyzed by EGA-QMS with
the Hiden Mass Spectrometer (Fig. 4). Carbon isotopic data was
collected via EGA-CRDS for all but one basalt sample from Sigurdf-
jell, which had insufficient inorganic carbon for analysis.
d 
e 

f

g 

h 

dstone (AM10-05-GM), and (c) white lithology (AM10-05-WL). Middle: (d) Micrite
onate crust (AM10-27-CS), (f) internal carbonate (AM10-27-CI), (g) carbonate/basalt
ferences to color in this figure legend, the reader is referred to the web version of this
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Fig. 5. Original XRD data are in blue, the simulated pattern is in red, the difference curve is in black, and the positions of all possible X-ray reflections are shown at the bottom
of the pattern, color coded to the phases listed. (a) Diffraction pattern and Rietveld refinement results for the Knorringfjell green lithology. (b) Diffraction pattern and Rietveld
refinement results for the Sigurdfjell exterior carbonate layer. Note the offset of the major peak, representing the difference between the mineralogy of the major carbonate
phases. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Evolved gas analysis of Knorringfjell carbonates show a diver-
sity of organic carbon compounds, as well as the complexity of
the mineralogy. Knorringfjell carbonates evolved organics over a
wide range of temperatures, possibly indicating a range of thermal
Fig. 6. EGA traces from the green carbonate lithology from Knorringfjell. The peak in the
indicate the presence of alkane fragments and benzene fragments, respectively. The lo
during pyrolysis of pyrite, which has been found in micrites associated with Knorringfje
color in this figure legend, the reader is referred to the web version of this article.)
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maturity or difference in binding to the rock matrix. The green
mudstone (AM10-05-GM), in particular showed evolution of al-
kane fragments at a broad distribution of temperatures, as well
as benzene (Fig. 6). Tentative identification of methane trapped
45 Da trace is consistent with carbonate. The 39 and 41 Da traces and the 78 trace
w temperature peak in the 66 Da trace (�560 �C) is consistent with SO2 evolution
ll Seep Carbonates by Hammer et al. (2011). (For interpretation of the references to
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Fig. 7. EGA traces from the surface of the Sigurdfjell carbonate crust. The 45 Da peak occurs at a temperature consistent with the thermal decomposition of the dolomite
known from Terra XRD results to comprise the majority of the sample’s carbonate mineralogy. The low-temperature 29 Da peak may result from partial oxidation of organics
to CO by H2O released by goethite at that pyrolysis temperature. The 39 and 41 Da traces and the 78 Da trace indicate the presence of alkane fragments and benzene
fragments, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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within the carbonate in this sample was also made, based on coin-
cident peaks in the 15 Da and 45 Da EGA-QMS traces from this
sample with peaks between 700 and 800 �C (Fig. 6). It is unclear
as to whether this methane is trapped in the carbonate or methane
made as a by-product of pyrolyzing organics. In addition, the 66 Da
trace from the EGA-QMS analyses showed a low temperature SO2

peak evolving between 500 and 600 �C consistent with SO2 evolved
from laboratory EGA of pyrite samples. This suggests trace
amounts of pyrite in these rocks. The 66 Da trace peak starting at
around 800 �C (and continuing beyond the length of the run) is
consistent with the SO2 peak onset temperature observed during
laboratory analysis of some Mg- or Ca-sulfates (e.g., epsomite).
We interpret these SO2 features as possible indications of pyrite
and Mg- or Ca-sulfate as trace minerals present as less than 1%
of the mineral matrix because they are below the Terra’s limit of
detection. It should be noted that other studies of this site have
reported detection of pyrite associated with these carbonates
(Hammer et al., 2011).

EGA of carbonates and basalts from Sigurdfjell reflect the pres-
ence of organics on the surface crust of the carbonate as well as
in the basalt (Fig. 7). In some sample traces (AM10-27-CS), a distinct
low temperature CO (29 Da) peak is seen, possibly a product of the
oxidation of organics during heating in the presence of water from
hydrated minerals (e.g., goethite). This hypothesis is supported by
the low-temperature evolution of H2O coincident with CO (Fig. 7).
The peak in the 45 Da trace occurs at a temperature consistent with
the thermal decomposition of the dolomite, known from Terra XRD
Table 3
Stable carbon and oxygen isotopic data for Knorringfjell and Sigurdfjell samples.

Sample ID Sample description % C EA/delta V d13C ‰ (PD
EA/delta V

Knorringfjell
AM10-05-GM Green mudstone 8.40 �39.3
AM10-05-WL White crystalline 7.92 �18.7
AM10-05-BM Black mudstone 11.84 �35.1
AM10-13-M Black micrite 8.67 �35.2

Sigurdfjell
AM10-27-CB Carbonate/basalt interface 0.55 �1.3
AM10-27-CS Surface carbonate crust 10.36 2.3
AM10-27-CI Internal carbonate 11.22 0.9
AM10-23-B Basalt 0.8 �5.3
AM10-23-WB Weathered Basalt 0.69 �5.9
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results to comprise the majority of the sample’s carbonate mineral-
ogy. Without Terra results, it would probably be difficult to discern
the presence of dominant dolomite vs. dominant calcite. EGA-QMS
would likely be unable to discriminate between these two particu-
lar carbonate minerals based on the peaks in the 45 Da EGA-QMS
traces alone, because the decomposition temperatures of calcite
and dolomite are similar. Siderite and magnesite, however, decom-
pose at lower temperatures than those of calcite and dolomite and
would be discernable from calcite and dolomite through EGA.

3.3. Stable isotopes

d13C values from Cavity Ring Down measurements are shown in
Table 3. Measurements are comparable to those obtained by con-
ventional combustion elemental analysis (EA) and gas bench IRMS.
A few CRDS values deviated significantly from IRMS values or had
large standard deviations; these measurements represent cases
when the sample was too dilute, and the CO2 concentration was
on the very edge of the analytical window of the instrumentation.
These samples were run again upon returning to the laboratory at
GSFC.

d13C measurements by EGA-CRDS had larger error than IRMS
measurements, but despite this, they track reasonably well (within
�3‰) with IRMS measurements, though CRDS measurements are
generally less precise with 1-r errors of 2–4‰. CRDS measure-
ments were more precise with the carbon-enriched samples
(C > 7%), which provided good signal to noise ratios and 1-r errors
B) d13C ‰ (PDB)
EGA/CRDS

d13C ‰ (PDB) Gas bench/
delta XL

d18O ‰ (PDB) Gas
bench/delta XL

�42.6 �38.8 �0.6
�18.6 �19.1 �14.8
�38.8 �34.7 �6.2
�34.5 �35.6 �0.6

0.9 1.6 �16.3
0.7 2.1 �16.9
�2.8 0.8 �22.1
NA 0.5 �15.9
NA 1.9 �15.9
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below 2‰. The agreement between values obtained by EGA-CRDS,
which should access primarily inorganic d13C (e.g. carbonates), and
EA-IRMS, a bulk combustion method that measures both organic
and inorganic d13C, indicate that these samples have only very
trace amounts of organic carbon. The agreement of EGA-CRDS
d13C with Gas Bench-IRMS data, which only measures d13C of car-
bonates in the sample, is further indication that there was a mini-
mal contribution of any oxidized organic carbon to the d13C value.

Carbon isotope analysis of three of the Knorringfjell samples re-
veals 13C-depleted values of �30‰ to �40‰, with the exception of
the white crystalline lithology (AM10-05-WL) identified by Terra
as 99% calcite, which has d13C of �19‰. Sigurdfjell samples are
dramatically different, with d13C values all near 0‰. Additional
data collected for vent carbonate samples at this site have d13C of
�5‰ (Table 3, AM10-0023).

d18O values of CO2 evolved during acid dissolution of carbonates
during Gas Bench – IRMS measurements are also presented in Ta-
ble 3. Although we did not have the capability to make this mea-
surement in the field, the SAM-TLS experiments will make d18O
measurements of CO2 evolved from carbonates with precisions of
�3‰ (Webster and Mahaffy, 2011). Again, Knorringfjell samples
are isotopically distinct from Sigurdfjell samples. The white lithol-
ogy stands alone, with d18O = �14.8‰, closer to Sigurdfjell samples
than Knorringfjell.
Fig. 8. d13C and d18O values of carbonates in this study (filled diamonds and
triangles), compared with isotopic values measured in the Sløttsmoya Member
(crosses and open triangles) by Hammer et al. (2011) and cryogenic carbonates in
Slovakian ice caves from Zak et al. (2004). The isotopic values of the Slovakian
cryogenic carbonates show similarities to Sigurdfjell carbonates, and the isotope
values of Knorringfjell carbonates from this study overlap with the range of values
obtained from Knorringfjell carbonates by Hammer et al. (2011).
4. Discussion

Although carbon isotopic composition alone cannot determine
biogenicity of a sample, it can, in the context of other geochemical,
mineralogical, and environmental evidence, provide very strong
evidence for the products of biological processes. Isotope results
obtained using EGA-CRDS with our customized system are suffi-
ciently precise to resolve d13C variations on the order of 3–5‰. This
resolution was sufficient to show differences in carbon sources be-
tween the two sites. At 2‰ precision, the flight instrument TLS has
even better precision for d13C measurements (Webster and
Mahaffy, 2011).

In the case of the Knorringfjell methane seep, which has been
studied in detail by Norwegian paleontologists (Hammer et al.,
2011), several lines of evidence suggesting biological activity were
well within the capabilities of MSL or a similarly equipped rover to
detect. First, the macrofossils in these hand samples were clearly
visible. Mineralogy and geochemistry from evolved gas analysis
established the presence of reduced organics, including ubiquitous
alkanes, the possible presence of reducing minerals (e.g. pyrite),
and tentative detection of methane (which the SAM TLS would also
be capable of identifying to verify mass spectrometric identifica-
tion by QMS). The 13C depleted isotopic values of these carbonates
is consistent with their formation as authigenic carbonate units,
precipitated above an active chemosynthetic community metabo-
lizing methane as an energy source. Active methane cold seeps
on Earth have been found to have rich bacterial diversity, based
on the ability of sulfate reducing Archaea to mediate anaerobic
methane oxidation (AOM) and to generate intermediate 13C de-
pleted carbon sources (e.g. formate or acetate) for nonmethano-
trophic microbes (Orphan et al., 2002). Although the presence of
pyrite alone is insufficient to indicate AOM or even sulfate reduc-
ing bacteria (SRB), the taxa identified by Hammer et al. (2011) at
this site have been linked to sulfide formation via anaerobic oxida-
tion of methane, including vestimentiferans, solemyids, and luci-
nids, all of which have sulfide-oxidizing bacterial symbionts
(Dubilier et al., 2008). Furthermore, tentative detection of an Mg-
or Ca-sulfate mineral by EGA-QMS may be consistent with compet-
ing sulfide-oxidizing bacteria within the community, or oxidation
of reduced sulfur materials in more oxygenated waters (Kuenen
Please cite this article in press as: Stern, J.C., et al. Isotopic and geochemical i
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et al., 1985). Sulfide-oxidizing bacteria depend on the presence of
reduced sulfur, and are therefore found in settings where bacterial
sulfate reduction takes place or where an inorganic source of re-
duced sulfur is available (e.g. Kuenen et al., 1985). Similar isotopic
anomalies of 13C-depleted carbonates associated with methane
seeps have been found in the Canadian Arctic and the Gulf of
Mexico (Beauchamp et al., 1989), although in some cases a range
of 13C values may exist at a single seep due to the presence of com-
plex carbon sources (Campbell et al., 2002; Roberts and Aharon,
1994). Our observations are consistent with other stable carbon
isotopic studies at this site (Fig. 8), where micrites and calcite spar
were moderately depleted (d13C = �15‰ to �23‰ VPDB) and
wackestone phases (e.g. black and green carbonate lithologies)
were variable, but more depleted than the micrite or calite spar,
with d13C as low as �43‰ (Hammer et al., 2011; Nakrem et al.,
2010).

The presence of the white calcite lithology (AM10-05-WL) in-
side an apparent vug and/or vein within the rock suggest that
this phase was formed later than the mudstone and micritic
lithologies. The 18O depletion of this calcite with respect to the
mudstone and micrite lithologies suggests formation associated
with hydrothermal fluid temperatures up to 130 �C (Hammer
et al., 2011). This sample appears to be representative of the
sparite (coarsely crystalline calcite cement) phase filling frac-
tures and veins identified by Hammer et al. (2011), which are
thought to have formed via hydrothermal activity during a burial
event associated with the High Arctic Large Igneous Province
(Maher, 2001).

In general, carbonates at Knorringfjell are isotopically distinct
from those measured in carbonate/basalt breccia crusts from Sig-
urdfjell (Fig. 8). Additionally, the mineralogy of Sigurdfjell samples
reflects mafic igneous materials (e.g. anorthite and augite) accom-
panied by common basalt weathering products such as goethite.
The carbonate mineralogy of the Sigurdfjell samples is also distinct
from that of Knorringfjell; very low amounts of calcite are present
in Sigurdfjell carbonates, which are dominated by dolomite and
nvestigation of two distinct Mars analog environments using evolved gas
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aragonite. This difference in carbonate mineralogy can be attrib-
uted to differences in the characteristics of the two distinct depo-
sitional environments, such as differences in the fluid compositions
and age of the rocks. At Sigurdfjell, fluids from which the carbon-
ates precipitated would have more abundant Mg in solution as
compared with Knorringfjell, due to their widespread interaction
with the mafic basalt materials. This could be responsible for more
prevalent dolomite at Sigurdfjell.

Although precipitation from hydrothermal fluids has been pro-
posed for the origin of Sigurdfjell carbonate, (Steele et al., 2007;
Treiman et al., 2002), it has recently been noted (Amundsen
et al., 2011) that Sigurdfjell and other Bockfjorden Volcanic Com-
plex (BVC) lava-hosted carbonates are isotopically similar to cave
carbonates formed cryogenically via slow freezing of water, CO2

outgassing from solution, and partial water evaporation Fig. 8. Sim-
ilar observations have been noted for Arctic carbonate crusts on
Ellesmere Island (Socki et al., 2009) and for carbonate globules
formed under laboratory cryogenic conditions (Niles et al., 2004).
Carbonates are precipitated during slow freezing in isotopic equi-
librium with surrounding glacial melt, with limited CO2 outgassing
and low d18O values resulting from Rayleigh fractionation between
ice and residual solution (Zak et al., 2004). In this scenario, subgla-
cial eruption of CO2-rich magmas would have melted the
surrounding glacial ice, followed by cryogenic carbonate precipita-
tion characterized by progressive 18O depletion during closed-sys-
tem freezing (Zak et al., 2004). Similar processes have been
described associated with aufeis formation in the Arctic (Clark
and Lauriol, 1997; Lacelle et al., 2006), where cryogenic carbonate
precipitation may happen without communication with the atmo-
sphere, and results in carbonate with very low d18O values be-
tween �24‰ and �32‰ (PDB).

At Sigurdfjell, the origin of the CO2 is not entirely clear and d13C
values may represent a mixing of the isotopic signature of meteoric
CO2 in glacial ice and mantle-derived CO2. Basalt samples taken
from other vents on Sigurdfjell have bulk d13C values of ��5.6‰

(Table 3, AM10-23-B, AM10-23-WB), consistent with mantle car-
bon. However, analysis of only the carbonate component of these
samples gives near-zero d13C values. Alternatively, the source of
the CO2 could have been mantle outgassing, but the kinetic isotope
effect associated with rapid outgassing of CO2 from solution during
rapid freezing of ice, causing 13C enrichment in residual fluid,
would have erased the original mantle values. To further compli-
cate interpretation, subsequent low-temperature hydrothermal
alteration of these carbonates, may have also changed the isotopic
signatures encoded during the original precipitation event
(Amundsen, 1987; Treiman et al., 2002).

Both cryogenic (Amundsen et al., 2011; Niles et al., 2004; Socki
et al., 2009) and hydrothermal (Niles et al., 2005; Steele et al.,
2007) origins for martian meteorite ALH84001 carbonates have
been suggested. Alternatively, recent clumped isotope geother-
mometry of ALH84001 carbonates suggests the formation of these
carbonates at 18 ± 4 �C (Halevy et al., 2011). These recent data,
coupled with iron microprobe observations of core-to-rim enrich-
ment in 18O and 13C of ALH84001 carbonates (e.g., Leshin et al.,
1998; Niles et al., 2005), is used to support a scenario for slow pre-
cipitation of carbonates under isotopic equilibrium in a partially
closed environment where fluids had limited exchange with the
atmosphere. The suggested mechanism involves gradual evapora-
tion driving loss of the lighter isotopes to CO2 and water vapor,
enriching residual fluids and resulting in isotopic zonation of car-
bonates (Halevy et al., 2011). Applying clumped isotope geother-
mometry to BVC carbonates would help resolve the water
temperature at the time of carbonate precipitation, and better spa-
tial carbon and oxygen isotopic resolution of zoned carbonates in
basalts and carbonate crusts on basaltic vents would elucidate
their formation histories.
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4.1. Relevance to MSL and Mars

Our study suggests that this subset of instrumentation, which
represents a fraction of the analytical toolset on Mars Science Lab-
oratory, can make several fundamental measurements on Mars
with resolutions comparable to those made in our field exercises.
Terra was able to resolve differences in carbonate mineralogy that
were inconclusive from EGA-QMS data alone. Conversely, EGA-
QMS was capable of detecting trace amounts of sulfur phases that
Terra did not see. It is expected that SAM and CheMin will comple-
ment one another in this way during MSL operations on Mars.
EGA-QMS detected a suite of organics that evolved across a wide
temperature range. EGA-QMS also detected evolved SO2 consistent
with SO2 evolution temperatures for both reduced and oxidized
sulfur minerals. Finally, the isotopic data obtained by evolving
CO2 from carbonates using a commercial Picarro Cavity Ring Down
CO2 isotope analyzer as a proxy for the SAM-TLS were successful in
identifying signatures of carbon from two very different sources
when combined with geochemical data from Terra and EGA-QMS.

MSL, and SAM in particular, will have additional tools at its dis-
posal not represented in this study, including the ability to combust
reduced organics to CO2 and analyze their 13C/12C ratios, and the abil-
ity to determine concentration and d13C of methane both in the
atmosphere and evolved from samples. Organics detection on SAM
will be further enhanced by gas chromatography columns, trapping
of organics, and even a derivatization experiment Mahaffy et al.,
2012. Additionally, concentration, D/H, and 18O/16O measurements
of H2O evolved from samples will complement CheMin mineralogi-
cal analyses of clays. Though these capabilities are beyond the scope
of this field study, they will offer a more sophisticated and thorough
analysis of gases evolved from Mars regolith during the MSL mission.

Martian carbonate precipitation could have occurred via multi-
ple mechanisms, including hydrothermal, cryogenic, or evaporative
deposition. Orbital data showing carbonate cements and breccias
associated with large impact basins support the notion of hydrother-
mal carbonate formation. Volcanic intrusion into ice, similar to the
subglacial BVC in Svalbard, could lead to one of several possible envi-
ronments analogous to carbonate precipitation on Mars. The large
amount of water ice, thought to exist just below the surface in some
regions on Mars (e.g., Byrne et al., 2009; Holt et al., 2008; Smith et al.,
2009) could easily be melted by volcanism or heat generated by im-
pact on the martian surface (Parnell et al., 2010). This water could
provide solutions for hydrothermal carbonate precipitation, as well
as cryogenic formation of carbonates in cooler areas along the mar-
gins of hydrothermal systems. Evaporative precipitation of carbon-
ates during a past time of warmer average surface temperatures
cannot be excluded, in light of the recently suggested�18 �C forma-
tion temperatures for the ancient carbonates in ALH84001 (Halevy
et al., 2011). Although large carbonate deposits have not been iden-
tified on the martian surface, carbonates have been inferred to be
present in some surface areas (e.g., Ehlmann et al., 2008; Michalski
and Niles, 2010) and in martian dust (e.g., Bandfield et al., 2003)
through orbital spectroscopic observations, detected in the Coman-
che outcrop at Gusev Crater by the MER Spirit Rover (Morris et al.,
2010), and found in abundances of several weight percent in regolith
at the Phoenix landing site (Boynton et al., 2009). Analog studies
highlighting complications in using remote sensing to detect car-
bonates suggest that even more massive deposits may exist (Bishop
et al., 2011) despite evidence that points to an acidic Mars aqueous
environment in more recent geologic history. These carbonates
could have been preserved by burial either by volcanism or sedi-
mentation (Michalski and Niles, 2010) and they may provide an iso-
topic record of atmospheric CO2, like carbonates in martian
meteorites (Niles et al., 2005, 2009). With appropriate analytical
tools, such as the techniques presented in this study, carbon and
oxygen isotopic measurements of carbonates on the martian surface
nvestigation of two distinct Mars analog environments using evolved gas
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could reveal a rich environmental history, and possibly, with contex-
tual mineralogical, chemical, and morphological evidence, signa-
tures of relict biological processes.
5. Conclusion

In this study, EGA-QMS, Terra XRD, and a Picarro CRDS were
used to emulate a subset of capabilities in the analytical laboratory
in the body of the MSL ‘‘Curiosity’’ rover. Our field instrument suite
was able to detect differences in mineralogy, d13C, and organics
content in several samples from two different sites representing
two different past Mars environments. Our data revealed two dif-
ferent sets of processes responsible for carbonate formation at
the two sites; authigenic carbonate precipitation associated with
chemosynthetic activity at a fossil methane seep, and abiotic pre-
cipitation associated with either cryogenic or hydrothermal pro-
cesses. Our data suggest that cryogenic carbonate formation is a
plausible origin for BVC carbonates, though more analysis, includ-
ing clumped isotope geothermometry, and spatially resolved isoto-
pic data could help better constrain formation mechanisms for
these unique carbonates that provide a terrestrial analog for mar-
tian meteorite ALH84001.
Acknowledgments

The authors would like to acknowledge NASA’s Astrobiology
Science and Technology for Exploring Planets (ASTEP) Program
for funding, the entire 2010 AMASE Team, the Ny Ålesund commu-
nity, the Norwegian Polar Institute, and the European Space
Agency. The authors also thank two anonymous reviewers for their
helpful comments.
References

Abramov, O., Kring, D.A., 2005. Impact-induced hydrothermal activity on early
Mars. J. Geophys. Res. – Planets 110, 1–19.

Amundsen, H.E.F., 1987. Evidence for liquid immiscibility in the upper mantle.
Nature 327, 692–695.

Amundsen, H.E.F. et al., 2010. Integrated exomars PanCam, Raman, and close-up
imaging field tests on AMASE 2009. Geophys. Res. Abstr. 12. Abstract EGU2010-
8757.

Amundsen, H.E.F. et al., 2011. Cryogenic Origin for Mars Analog Carbonates in the
Bockfjord Volcanic Complex, Svalbard (Norway). Lunar Planet. Sci. 42, 2223.

Bandfield, J.L., Glotch, T.D., Christensen, P.R., 2003. Spectroscopic identification of
carbonate minerals in the martian dust. Science 301, 1084–1087.

Beauchamp, B., Krouse, H.R., Harrison, J.C., Nassichuk, W.W., Eliuk, L.S., 1989.
Cretaceous cold-seep communities and methane-derived carbonates in the
Canadian Arctic. Science 244, 53–56.

Bish, D.L., Post, J.E., 1993. Quantitative mineralogical analysis using the rietveld full-
pattern fitting method. Am. Mineral. 78, 932–940.

Bish, D.L. et al., 2007. Field Xrd/Xrf Mineral Analysis by the Msl CheMin Instrument.
Lunar Planet. Sci. 38, 1163.

Bishop, J.L. et al., 2001. Mineralogical and geochemical analyses of antarctic lake
sediments: A study of reflectance and Mossbauer spectroscopy and C, N, and S
isotopes with applications for remote sensing on Mars. Geochim. Cosmochim.
Acta 65, 2875–2897.

Bishop, J.L., Schelble, R.T., McKay, C.P., Brown, A.J., Perry, K.A., 2011. Carbonate rocks
in the Mojave Desert as an analogue for martian carbonates. Int. J. Astrobiol. 10,
349–358.

Blake, D., 2010. A Historical Perspective of the Development of the CheMin
Instrument for the Mars Science Laboratory (Msl ’11) Mission. Geochemical
News.

Blake, D.F. et al., 2009. The CheMin Mineralogical Instrument on the Mars Science
Laboratory Mission. Lunar Planet. Sci. 50.

Blake, D.F. et al., 2010. Test and Delivery of the CheMin Mineralogical Instrument
for Mars Science Laboratory 11. Lunar Planet. Sci. 41, 1898.

Boynton, W.V. et al., 2009. Evidence for CALCIUM carbonate at the Mars Phoenix
landing site. Science 325, 61–64.

Byrne, S. et al., 2009. Distribution of mid-latitude ground ice on Mars from new
impact craters. Science 325, 1674–1676.

Campbell, K.A., Farmer, J.D., Des Marais, D., 2002. Ancient Hydrocarbon Seeps from
the Mesozoic convergent margin of California: Carbonate geochemistry, fluids
and palaeoenvironments. Geofluids 2, 63–94.
Please cite this article in press as: Stern, J.C., et al. Isotopic and geochemical i
techniques in Svalbard, Norway. Icarus (2012), http://dx.doi.org/10.1016/j.icar
Carr, R.H., Grady, M.M., Wright, I.P., Pillinger, C.T., 1985. Martian atmospheric
carbon-dioxide and weathering products in Snc meteorites. Nature 314, 248–
250.

Chapman, M.G., Tanaka, K.L., 2002. Related magma, Äìice interactions: Possible
origins of chasmata, chaos, and surface materials in xanthe, margaritifer, and
Meridiani Terrae, Mars. Icarus 155, 324–339.

Chipera, S.J., Bish, D.L., 2002. Fullpat: A full-pattern quantitative analysis program
for X-ray powder diffraction using measured and calculated patterns. J. Appl.
Crystallogr. 35, 744–749.

Clark, I.D., Lauriol, B., 1997. Aufeis of the Firth river basin, Northern Yukon Canada:
Insights into permafrost hydrogeology and Karst. Arct. Alp. Res. 29, 240–252.

Crosson, E.R., 2008. A cavity ring-down analyzer for measuring atmospheric levels
of methane, carbon dioxide, and water vapor. Appl. Phys. B: Lasers Opt. 92, 403–
408.

Dubilier, N., Bergin, C., Lott, C., 2008. Symbiotic diversity in marine animals: The art
of harnessing chemosynthesis. Nat. Rev. Microbiol. 6, 725–740.

Dypvik, H. et al., 1991. The Janusfjellet subgroup (Bathonian to Hauterivian) on
central Spitsbergen – A revised lithostratigraphy. Polar Res. 9, 21–43.

Dypvik, H., Nagy, J., Eikeland, T.A., Backerowe, K., Johansen, H., 1991. Depositional
conditions of the Bathonian to Hauterivian Janusfjellet subgroup, Spitsbergen.
Sediment Geol. 72, 55–78.

Edwards, B.R., Tuffen, H., Skilling, I.P., Wilson, L., 2009. Introduction to special issue
on volcano-ice interactions on Earth and Mars: The state of the science. J.
Volcanol. Geotherm. Res. 185, 247–250.

Ehlmann, B.L. et al., 2008. Orbital identification of carbonate-bearing rocks on Mars.
Science 322, 1828–1832.

Fairen, A.G. et al., 2005. Prime candidate sites for astrobiological exploration
through the hydrogeological history of Mars. Planet. Space Sci. 53, 1355–1375.

Farquhar, G.D., Ehleringer, J.R., Hubick, K.T., 1989. Carbon isotope discrimination
and photosynthesis. Ann. Rev. Plant Physiol. 40, 503–537.

Fernandez-Remolar, D.C., Morris, R.V., Gruener, J.E., Amils, R., Knoll, A.H., 2005. The
Rio Tinto basin, Spain: Mineralogy, sedimentary geobiology, and implications
for interpretation of outcrop rocks at Meridiani Planum, Mars. Earth Planet. Sci.
Lett. 240, 149–167.

Goetz, W. et al., 2011. Mars Organic Molecule Analyzer (Moma) Field Test as Part of
the AMASE 2010 Svalbard Expedition. Lunar Planet. Sci. 42. Abstract 2460.

Halevy, I., Fischer, W.W., Eiler, J.M., 2011. Carbonates in the martian meteorite Allan
Hills 84001 formed at 18 ± 4 �C in a near-surface aqueous environment. Proc.
Nat. Acad. Sci. 108, 16895–16899.

Hamilton, C.W., Fagents, S.A., Thordarson, T., 2011. Lava and ground ice interactions
in Elysium Planitia, Mars: Geomorphological and geospatial analysis of the
Tartarus Colles Cone groups. J. Geophys. Res. 116, E03004.

Hammer, O. et al., 2011. Hydrocarbon seeps from close to the Jurassic–Cretaceous
boundary, Svalbard. Palaeogeogr. Palaeocl. 306, 15–26.

Hayes, J.M., 1993. Factors controlling 13c contents of sedimentary organic
compounds: Principles and evidence. Mar. Geol. 113, 111–125.

Hoefs, J., 1980. Stable Isotope Geochemistry. Springer-Verlag, Heidelberg, Germany.
Holt, J.W. et al., 2008. Radar sounding evidence for buried glaciers in the southern

mid-latitudes of Mars. Science 322, 1235–1238.
Huang, Y. et al., 2005. Molecular and compound-specific isotopic characterization of

monocarboxylic acids in Carbonaceous meteorites. Geochim. Cosmochim. Acta
69, 1073–1084.

Jakosky, B.M., 1999. Martian stable isotopes: Volatile evolution, climate change and
exobiological implications. Orig. Life Evol. Biospher. 29, 47–57.

Josset, J. et al., 2011. Clupi: The high-performance close-up camera system on board
the 2018 exomars rover. Geophys. Res. Abstr. 13. Abstract EGU2011-13365.

Jull, A.J.T., Eastoe, C.J., Cloudt, S., 1997. Isotopic composition of carbonates in the Snc
meteorites, Allan Hills 84001 and Zagami. J. Geophys. Res. – Planets 102, 1663–
1669.

Komatsu, G., Ori, G.G., 2000. Exobiological implications of potential sedimentary
deposits on Mars. Planet. Space Sci. 48, 1043–1052.

Komatsu, G. et al., 2011. Roles of methane and carbon dioxide in geological
processes on Mars. Planet. Space Sci. 59, 169–181.

Krajewski, K.P., 2004. Carbon and oxygen isotopic survery of diagenetic carbonate
deposits in the Agardhfjellet formation (Upper Jurassic), Spitsbergen:
Preliminary results. Polish Polar Res. 25, 27–43.

Kuenen, J.G., Robertson, L.A., Vangemerden, H., 1985. Microbial interactions among
aerobic and anaerobic sulfur-oxidizing bacteria. Adv. Microb. Ecol. 8, 1–59.

Lacelle, D., Lauriol, B., Clark, I.D., 2006. Effect of chemical composition of water on
the oxygen-18 and carbon-13 signature preserved in cryogenic carbonates,
Arctic Canada: Implications in paleoclimatic studies. Chem. Geol. 234, 1–16.

Leshin, L.A., McKeegan, K.D., Carpenter, P.K., Harvey, R.P., 1998. Oxygen isotopic
constraints on the genesis of carbonates from martian meteorite ALH84001.
Geochim. Cosmochim. Acta 62, 3–13.

Léveillé, R., 2009. Validation of astrobiology technologies and instrument
operations in terrestrial analogue environments. C. R. Palevol. 8, 637–648.

Mahaffy, P., 2008. Exploration of the habitability of Mars: Development of analytical
protocols for measurement of organic carbon on the 2009 Mars Science
Laboratory. Space Sci. Rev. 135, 255–268.

Mahaffy, P.R. et al., 2012. The Sample Analysis at Mars Investigation and Instrument
Suite. Space Science Reviews. 1–78.

Maher, H.D.J., 2001. Manifestations of the cretaceous high arctic large Igneous
Province in Svalbard. J. Geol. 109, 91–104.

McAdam, A.C. et al., 2011. Field Characterization of the Mineralogy and Organic
Chemistry of Carbonates from the 2010 Arctic Mars Analog Svalbard Expedition
by Evolved Gas Analysis. Lunar Planet. Sci. 42.
nvestigation of two distinct Mars analog environments using evolved gas
us.2012.07.010

http://dx.doi.org/10.1016/j.icarus.2012.07.010


12 J.C. Stern et al. / Icarus xxx (2012) xxx–xxx
McCollom, T.M., Seewald, J.S., 2006. Carbon isotope composition of organic
compounds produced by abiotic synthesis under hydrothermal conditions.
Earth Planet. Sci. Lett. 243, 74–84.

Michalski, J.R., Niles, P.B., 2010. Deep crustal carbonate rocks exposed by meteor
impact on Mars. Nat. Geosci. 3, 751–755.

Morris, R.V. et al., 2010. Identification of carbonate-rich outcrops on Mars by the
spirit rover. Science 329, 421–424.

Morris, R.V. et al., 2011. A Terrestrial Analogue from Spitsbergen (Svalbard, Norway)
for the Comanche Carbonate at Gusev Crater, Mars. Lunar Planet. Sci. 42, p. 1699
(LPI Contribution No. 1608).

Mumma, M.J. et al., 2009. Strong release of methane on Mars in northern summer
2003. Science 323, 1041–1045.

Nagy, J., Basov, V.A., 1998. Revised foraminiferal taxa and biostratigraphy of
bathonian to Ryazanian deposits in Spitsbergen. Micropaleontology 44, 217–
255.

Nakrem, H.A., Hammer, Ø., Jørn, H., Little, C.T.S., 2010. A Hydrocarbon Seep Fauna
from the Uppermost Jurrasic of Spitsbergen, Svalbard. Third International
Palaeontological Congress, London, p. 291.

Navarro-Gonzalez, R. et al., 2003. Mars-like soils in the Atacama Desert, Chile, and
the dry limit of microbial life. Science 302, 1018–1021.

Navarro-Gonzalez, R. et al., 2004. Mars-like, soils in the Yungay Area, the driest core
of the Atacama desert in northern Chile. In: J. Seckbach et al. (Eds.), Life in the
Universe: From the Miller Experiment to the Search for Life on Other Worlds,
pp. 211–216.

Navarro-Gonzalez, R., Vargas, E., de la Rosa, J., Raga, A.C., McKay, C.P., 2010.
Reanalysis of the viking results suggests perchlorate and organics at
midlatitudes on Mars. J. Geophys. Res. – Planets, 115 E12, (AGU Contribution
CiteID E12010).

Niles, P.B., Leshin, L.A., Socki, R.A., Guan, Y., Ming, D.W., Gibson, E.K., 2004.
Cryogenic Calcite – A Morphologic and Isotopic Analog to the ALH84001
Carbonates. Lunar Planet. Sci. 35, 1459.

Niles, P.B., Leshin, L.A., Guan, Y., 2005. Microscale carbon isotope variability in
ALH84001 carbonates and a discussion of possible formation environments.
Geochim. Cosmochim. Acta 69, 2931–2944.

Niles, P.B., Zolotov, M.Y., Leshin, L.A., 2009. Insights into the formation of Fe- and
Mg-rich aqueous solutions on early Mars provided by the ALH84001
carbonates. Earth Planet. Sci. Lett. 286, 122–130.

Niles, P.B., Boynton, W.V., Hoffman, J.H., Ming, D.W., Hamara, D., 2010. Stable
Isotope Measurements of Martian Atmospheric CO2 at the Phoenix Landing Site.
Science. 329, 1334–1337.

O’Neil, J.R., 1986. Theoretical and experimental aspects of isotope fractionation. In:
Valley, J.W., Taylor, Jr., H.P., O’Neil, J.R., (Ed.), Stable Isotopes in High
Temperature Geological Processes. Rev. Mineral., pp. 1–40.

Orphan, V.J., House, C.H., Hinrichs, K.U., McKeegan, K.D., DeLong, E.F., 2002. Multiple
archaeal groups mediate methane oxidation in anoxic cold seep sediments.
Proc. Nat. Acad. Sci. USA 99, 7663–7668.

Paldus, B.A., Kachanov, A.A., 2005. An historical overview of cavity-enhanced
methods. Can. J. Phys. 83, 975–999.

Parnell, J., Mazzini, A., Honghan, C., 2002. Fluid inclusion studies of chemosynthetic
carbonates: Strategy for seeking life on Mars. Astrobiology 2, 43–57.

Parnell, J., Taylor, C.W., Thackrey, S., Osinski, G.R., Lee, P., 2010. Permeability data for
impact breccias imply focussed hydrothermal fluid flow. J. Geochem. Explor.
106, 171–175.

Committee on the Planetary Science Decadal Survey N.R.C., Visions and Voyages for
Planetary Science in the Decade 2013–2022. 2011.

Pondrelli, M., Rossi, A.P., Ori, G.G., van Gasselt, S., Praeg, D., Ceramicola, S., 2011.
Mud volcanoes in the geologic record of Mars: The case of Firsoff crater. Earth
Planet. Sci. Lett. 304, 511–519.
Please cite this article in press as: Stern, J.C., et al. Isotopic and geochemical i
techniques in Svalbard, Norway. Icarus (2012), http://dx.doi.org/10.1016/j.icar
Proskurowski, G., Lilley, M.D., Kelley, D.S., Olson, E.J., 2006. Low temperature
volatile production at the lost city hydrothermal field, evidence from a
hydrogen stable isotope geothermometer. Chem. Geol. 229, 331–343.

Roberts, H.H., Aharon, P., 1994. Hydrocarbon-derived carbonate buildups of the
northern Gulf-of-Mexico continental-slope – A review of submersible
investigations. Geo-Mar. Lett. 14, 135–148.

Rull, F. et al., 2011. Exomars Raman laser spectrometer for exomars. Proc. SPIE,
8152, p. 85120J.

Schidlowski, M., 1992. Stable carbon isotopes: Possible clues to early life on Mars.
Adv. Space Res. 12, 101–110.

Schulze-Makuch, D. et al., 2007. Exploration of hydrothermal targets on Mars. Icarus
189, 308–324.

Sephton, M.A., Verchovsky, A.B., Bland, P.A., Gilmour, I., Grady, M.M., Wright, I.P.,
2003. Investigating the variations in carbon and nitrogen isotopes in
carbonaceous chondrites. Geochim. Cosmochim. Acta 67, 2093–2108.

Sherwood-Lollar, B., Lacrampe-Couloume, G., Voglesonger, K., Onstott, T.C., Pratt,
L.M., Slater, G.F., 2008. Isotopic signatures of Ch4 and Higher hydrocarbon gases
from Precambrian shield sites: A model for abiogenic polymerization of
hydrocarbons. Geochim. Cosmochim. Acta 72, 4778–4795.

Skjelkvale, B.L., Amundsen, H.E.F., Oreilly, S.Y., Griffin, W.L., Gjelsvik, T., 1989. A
Primitive alkali basaltic stratovolcano and associated eruptive centers,
northwestern Spitsbergen – Volcanology and tectonic significance. J. Volcanol.
Geotherm. Res. 37, 1–19.

Smith, P.H. et al., 2009. H2O at the Phoenix landing site. Science 325, 58–61.
Socki, R.A., Niles, P.B., Blake, W., Leveille, R., 2009. Covariant C and O Isotope Trends

in Arctic Carbonate Crusts and ALH84001: Potential Biomarker or Indicator of
Cryogenic Formation Environment? Lunar Planet. Sci. 40, 2218.

Steele, A. et al., 2007. Comprehensive imaging and Raman spectroscopy of
carbonate globules from martian meteorite ALH84001 and a terrestrial
analogue from Svalbard. Meteorit. Planet Sci. 42, 1549–1566.

Stern, J.C. et al., 2011. D13c Analysis of Mars Analog Carbonates Using Evolved Gas-
Cavity Ringdown Spectrometry on the 2010 Arctic Mars Analog Svalbard
Expedition (AMASE). Lunar Planet. Sci. 42.

ten Kate, I.L. et al., 2010. Vapor: Volatile analysis by pyrolysis of regolith; an
instrument for in situ detection of water, noble gases, and organics on the
Moon. Planet. Space Sci. 58, 1007–1017.

Treiman, A.H., Amundsen, H.E.F., Blake, D.F., Bunch, T., 2002. Hydrothermal origin
for carbonate globules in martian meteorite ALH84001: A terrestrial analogue
from Spitsbergen (Norway). Earth Planet. Sci. Lett. 204, 323–332.

Treiman, A.H., Robinson, K.L., Blake, D.F., Bish, D., 2010. Mineralogy determinations
by CheMin Xrd, tested on ultramafic rocks (mantle xenoliths). In: Astrobiology
Science Conference 2010: Evolution and Life: Surviving Catastrophes and
Extremes on Earth and Beyond, p. 5351 (LPI Contribution No. 1538).

Villanueva, G.L., Mumma, M.J., Novak, R.E., 2009. Strong release of methane on
Mars: Evidence of biology or geology? Geochim. Cosmochim. Acta 73, A1384.

Webster, C.R., 2005. Measuring methane and its isotopes (Ch4)-C-12, (Ch4)-C-13,
and Ch3d on the surface of Mars with in situ laser spectroscopy. Appl. Opt. 44,
1226–1235.

Webster, C.R., Mahaffy, P.R., 2011. Determining the local abundance of martian
methane and its’ 13c/12c and D/H isotopic ratios for comparison with related
gas and soil analysis on the 2011 Mars Science Laboratory (MSL) mission.
Planet. Space Sci. 59, 271–283.

Wright, I.P., Grady, M.M., Pillinger, C.T., 1988. Carbon, oxygen and nitrogen isotopic
compositions of possible martian weathering products in EETA 79001.
Geochimica Et Cosmochimica Acta. 52, 917–924.

Zak, K., Urban, J., Cilek, V., Hercman, H., 2004. Cryogenic cave calcite from several
central European Caves: Age, carbon and oxygen isotopes and a genetic model.
Chem. Geol. 206, 119–136.
nvestigation of two distinct Mars analog environments using evolved gas
us.2012.07.010

http://dx.doi.org/10.1016/j.icarus.2012.07.010

	Isotopic and geochemical investigation of two distinct Mars analog  environments using evolved gas techniques in Svalbard, Norway
	1 Introduction
	1.1 Brief overview of the AMASE 2010 campaign
	1.2 Mars Science Laboratory
	1.3 Site description

	2 Methods and procedure
	2.1 Sample collection and preparation
	2.2 Remote laboratory/field instrumentation
	2.2.1 Terra XRD/XRF
	2.2.2 EGA-QMS
	2.2.3 EGA-CRDS

	2.3 Isotope ratio mass spectrometry (IRMS)

	3 Results
	3.1 Bulk mineralogy
	3.2 Evolved Gas Analysis
	3.3 Stable isotopes

	4 Discussion
	4.1 Relevance to MSL and Mars

	5 Conclusion
	Acknowledgments
	References


