13 research outputs found

    Evolution of the γ\gamma-ray strength function in neodymium isotopes

    Full text link
    The experimental gamma-ray strength functions (gamma-SFs) of 142,144-151Nd have been studied for gamma-ray energies up to the neutron separation energy. The results represent a unique set of gamma-SFs for an isotopic chain with increasing nuclear deformation. The data reveal how the low-energy enhancement, the scissors mode and the pygmy dipole resonance evolve with nuclear deformation and mass number. The data indicate that the mechanisms behind the low-energy enhancement and the scissors mode are decoupled from each other.Comment: 14 pages and 10 figure

    The study of prompt fission <i>γ</i> rays at the Oslo Cyclotron Laboratory

    No full text
    International audienceThe study of prompt fission γ rays (PFGs) is crucial for understanding the energy and angular momentum distribution in fission, and over the last decade there has been an revived interest in this aspect of fission. We present the new experimental setup at the Oslo Cyclotron Laboratory for detecting PFGs resulting from charged particle-induced fission. Additionally, PFGs from the reaction 240 Pu(d,pf) were measured in April 2018, and the fission gated proton-γ coincidence spectrum is shown. In order to explore the dependence of the PFG emission on the excitation energy and angular momentum of the compound nucleus, we plan several experiments where charged particle reactions are used to induce fission in various plutonium isotopes. The final results will be compared to predictions made by the Fission Reaction Event Yield Algorithm (FREYA) in an upcoming publication, to benchmark the current modelling of both the PFGs and the fission process

    Excitation energy dependence of prompt fission γ\gamma-ray emission from 241Pu^{241}\mathrm{Pu}{}^{*}

    No full text
    International audiencePrompt fission γ rays (PFGs) resulting from the Pu240(d,pf) reaction have been measured as a function of fissioning nucleus excitation energy Ex at the Oslo Cyclotron Laboratory. We study the average total PFG multiplicity per fission, the average total PFG energy released per fission, and the average PFG energy. No significant changes in these characteristics are observed over the range 5.75<Ex<8.25 MeV. The physical implications of this result are discussed. The experimental results are compared to simulations conducted using the computational fission model FREYA. We find that FREYA reproduces the experimental PFG characteristics within 8% deviation across the Ex range studied. Previous excitation energy-dependent PFG measurements conducted below the second-chance fission threshold have large uncertainties, but are generally in agreement with our results within a 2σ confidence interval. However, both a published parametrization of the PFG energy dependence and the most recent PFG evaluation included in ENDF/B-VIII.0 were found to poorly describe the PFG excitation-energy dependence observed in this and previous experiments

    Nuclear level densities and ?-ray strength functions in 120,124Sn isotopes: Impact of Porter-Thomas fluctuations

    No full text
    Nuclear level densities (NLDs) and gamma -ray strength functions (GSFs) of 120,124Sn have been extracted with the Oslo method from proton-gamma coincidences in the (p, p'gamma ) reaction. The functional forms of the GSFs and NLDs have been further constrained with the Shape method by studying primary gamma -transitions to the ground and first excited states. The NLDs demonstrate good agreement with the NLDs of 116,118,122Sn isotopes measured previously. Moreover, the extracted partial NLD of 1- levels in 124Sn is shown to be in fair agreement with those deduced from spectra of relativistic Coulomb excitation in forward-angle inelastic proton scattering. The experimental NLDs have been applied to estimate the magnitude of the Porter-Thomas (PT) fluctuations. Within the PT fluctuations, we conclude that the GSFs for both isotopes can be considered to be independent of initial and final excitation energies, in accordance with the generalized Brink-Axel hypothesis. Particularly large fluctuations observed in the Shape-method GSFs present a considerable contribution to the uncertainty of the method and may be one of the reasons for deviations from the Oslo-method strength at low gamma -ray energies and low values of the NLD (below eta 1 x 103-2 x 103 MeV-1)

    Comprehensive Test of the Brink-Axel Hypothesis in the Energy Region of the Pygmy Dipole Resonance

    No full text
    The validity of the Brink-Axel hypothesis, which is especially important for numerous astrophysical calculations, is addressed for 116,120,124Sn below the neutron separation energy by means of three independent experimental methods. The gamma-ray strength functions (GSFs) extracted from primary gamma-decay spectra following charged-particle reactions with the Oslo method and with the shape method demonstrate excellent agreement with those deduced from forward-angle inelastic proton scattering at relativistic beam energies. In addition, the GSFs are shown to be independent of excitation energies and spins of the initial and final states. The results provide a critical test of the generalized Brink-Axel hypothesis in heavy nuclei, demonstrating its applicability in the energy region of the pygmy dipole resonance

    Study of N=50N=50 gap evolution around Z=32Z=32: new structure information for 82{}^{82}Ge

    No full text
    International audienceMedium spin states of light N = 50 isotones have been populated using fast neutron-induced fission of 232{}^{232}Th. Online prompt γ\gamma  spectroscopy has been performed using the hybrid γ\gamma  spectrometer ν-\nu \text {-}Ball coupled to the LICORNE directional neutron source at the ALTO facility of IJCLab. Medium spin states of the neutron-rich nucleus 82{}^{82}Ge have been investigated using γ\gamma -γ\gamma  and γ\gamma -γ\gamma -γ\gamma  coincidence data to exploit the resolving power of ν-\nu \text {-}Ball. Two new transitions were assigned to this nucleus and a new level was placed in the level scheme. We tentatively assigned to this new state a (7+7^{+}) spin-parity, which is interpreted as a new N=50N=50 core breaking state. This provides further insight into the energy evolution of the N=50N=50 shell gap toward 78{}^{78}Ni

    Prompt and delayed γ\gamma spectroscopy of neutron-rich 94^{94}Kr and observation of a new isomer

    Get PDF
    Prompt and delayed γ-ray spectroscopy of the neutron-rich 94Kr was performed, as part of the fission campaign at the ALTO facility of the IPN Orsay, using the fast-neutron-induced fission reaction 238U(n,f) in combination with the ν-Ball array, a novel hybrid γ spectrometer for energy and lifetime measurements. Several new yrast and nonyrast transitions were observed for the first time, extending the previously known level scheme. Additionally, we report on the observation of a new short-lived isomer at 3444 keV with a half-life of 32(3) ns. The analysis of the Nilsson orbitals obtained from Gogny cranked Hartree-Fock-Bogoliubov calculations suggests a (9−) spin and an oblate deformation for this isomer corresponding to a two-quasineutron state, indicating an isomeric structure very similar to that of the neighboring isotones 96Sr and 92S

    First lifetime investigations of N>82N>82 iodine isotopes: The quest for collectivity

    Get PDF
    We report on spectroscopic information and lifetime measurements in the neutron-rich I135,137,139 isotopes. This is the first lifetime data on iodine isotopes beyond N=82. Excited states were populated in fast neutron-induced fission of U238 at the ALTO facility of IJCLab with the LICORNE neutron source and detected using the hybrid ν-ball spectrometer. The level schemes of the I135,137,139 isotopes are revised in terms of excited states with up to maximum spin-parity of (33/2+), populated for the first time in fast neutron-induced fission. We provide first results on the lifetimes of the (9/21+) and (13/21+) states in I137 and I139, and the (17/21+) state in I137. In addition, we give upper lifetime limits for the (11/21+) states in I135−139, the (15/21+) state in I137, the (17/21+) state in I139, and reexamine the (29/21+) state in I137. The isomeric data in I135 are reinvestigated, such as the previously known (15/21+) and (23/21−) isomers with T1/2 of 1.64(14) and 4.6(7) ns, respectively, as obtained in this work. The new spectroscopic information is compared to that from spontaneous or thermal-neutron induced fission and discussed in the context of large scale shell-model (LSSM) calculations for the region beyond Sn132, indicating the behavior of collectivity for the three valence-proton iodine chain with N=82,84,86

    γ\gamma-ray Spectroscopy of 85^{85}Se Produced in 232^{232}Th Fission

    Get PDF
    Excited states in the neutron-rich 85Se nucleus have been studied using for the first time a fast neutron-induced fission of 232Th. The experiment was performed at the ALTO facility of the IPN Orsay. Coupling of the LICORNE directional neutron source with the ν-ball high-resolution γ-ray spectrometer provided unique access to high-spin states in neutron-rich fission fragments from the 232Th(n, f) reaction. A preliminary level scheme of 85Se was established by the analysis of prompt γ–γ–γ coincidences. Identification of the all known yrast states in 85Se is the first step towards studies of more neutron-rich Se isotopes

    Spectroscopy and lifetime measurements in 134,136,138^{134,136,138}Te isotopes and implications for the nuclear structure beyond N=82N=82

    Get PDF
    We report on spectroscopic information and lifetime measurements of even-even neutron-rich Te isotopes. Excited states were populated in fast-neutron induced fission of U238 at the ALTO facility of IJCLab with the LICORNE neutron source and detected using the hybrid ν-ball spectrometer. We provide first results on lifetimes of the 61+ state in Te136 and the (61+), (41+), and (21+) states in Te138 and discuss the results in the context of large-scale shell-model calculations. The level schemes of Te136 and Te138 are revised in terms of lifetimes of their 21+,41+ states and updated information on the (42+) state in Te136 is presented. In addition, previously reported data on spectroscopy and lifetimes in Te134 are reexamined. This work provides new insights into the evolution of collectivity for Te isotopes with N=82,84,86
    corecore