63 research outputs found

    The Effect of PCSK1 Variants on Waist, Waist-Hip Ratio and Glucose Metabolism Is Modified by Sex and Glucose Tolerance Status

    Get PDF
    on measures of body fat and glucose homeostasis in Danish individuals and to assess interactions of genotypes with age, sex and glucose tolerance status. Data were included in meta-analyses of additional Europeans. = 0.02) elevated level of acute insulin response for this variant. Finally, we found that the rs6232 G-allele associated with higher levels of GLP-1, GLP-2 and glucagon and that the rs6235 C-allele associated with higher levels of GIP and glucagon during a meal-test. rs6232 G-allele and rs6235 C-allele have an effect on body composition which may be modified by sex, whereas the effect of rs6235 C-allele on fasting and stimulated circulating plasma glucose and hormone levels may be influenced by glucose tolerance status

    Family and Population-Based Studies of Variation within the Ghrelin Receptor Locus in Relation to Measures of Obesity

    Get PDF
    The growth hormone secretagogue receptor (GHSR) is mediating hunger sensation when stimulated by its natural ligand ghrelin. In the present study, we tested the hypothesis that common and rare variation in the GHSR locus are related to increased prevalence of obesity and overweight among Whites.In a population-based study sample of 15,854 unrelated, middle-aged Danes, seven variants were genotyped to capture common variation in an 11 kbp region including GHSR. These were investigated for their individual and haplotypic association with obesity. None of these analyses revealed consistent association with measures of obesity. A -151C/T promoter mutation in the GHSR was found in two unrelated obese patients. One family presented with complete co-segregation, but the other with incomplete co-segregation. The mutation resulted in an increased transcriptional activity (p<0.02) and introduction of a specific binding for Sp-1-like nuclear extracts relative to the wild type. The -151C/T mutation was genotyped in the 15,854 Danes with a minor allele frequency of 0.01%. No association with obesity in carriers (mean BMI: 27+/-4 kg/m(2)) versus non-carriers (mean BMI: 28+/-5 kg/m(2)) (p>0.05) could be shown.In a population-based study sample of 15,854 Danes no association between GHSR genotypes and measures of obesity and overweight was found. Also, analyses of GHSR haplotypes lack consistent associations with obesity related traits. A rare functional GHSR promoter mutation variant was identified, yet there was no consistent relationship with obesity in neither family- nor population-based studies

    Genome-Wide Population-Based Association Study of Extremely Overweight Young Adults – The GOYA Study

    Get PDF
    Background: Thirty-two common variants associated with body mass index (BMI) have been identified in genome-wide association studies, explaining ~1.45% of BMI variation in general population cohorts. We performed a genome-wide association study in a sample of young adults enriched for extremely overweight individuals. We aimed to identify new loci associated with BMI and to ascertain whether using an extreme sampling design would identify the variants known to be associated with BMI in general populations. Methodology/Principal Findings: From two large Danish cohorts we selected all extremely overweight young men and women (n = 2,633), and equal numbers of population-based controls (n = 2,740, drawn randomly from the same populations as the extremes, representing ~212,000 individuals). We followed up novel (at the time of the study) association signals (

    Bioinformatics-Driven Identification and Examination of Candidate Genes for Non-Alcoholic Fatty Liver Disease

    Get PDF
    ObjectiveCandidate genes for non-alcoholic fatty liver disease (NAFLD) identified by a bioinformatics approach were examined for variant associations to quantitative traits of NAFLD-related phenotypes.Research Design and MethodsBy integrating public database text mining, trans-organism protein-protein interaction transferal, and information on liver protein expression a protein-protein interaction network was constructed and from this a smaller isolated interactome was identified. Five genes from this interactome were selected for genetic analysis. Twenty-one tag single-nucleotide polymorphisms (SNPs) which captured all common variation in these genes were genotyped in 10,196 Danes, and analyzed for association with NAFLD-related quantitative traits, type 2 diabetes (T2D), central obesity, and WHO-defined metabolic syndrome (MetS).Results273 genes were included in the protein-protein interaction analysis and EHHADH, ECHS1, HADHA, HADHB, and ACADL were selected for further examination. A total of 10 nominal statistical significant associations (P&lt;0.05) to quantitative metabolic traits were identified. Also, the case-control study showed associations between variation in the five genes and T2D, central obesity, and MetS, respectively. Bonferroni adjustments for multiple testing negated all associations.ConclusionsUsing a bioinformatics approach we identified five candidate genes for NAFLD. However, we failed to provide evidence of associations with major effects between SNPs in these five genes and NAFLD-related quantitative traits, T2D, central obesity, and MetS

    Identification and Functional Characterization of G6PC2 Coding Variants Influencing Glycemic Traits Define an Effector Transcript at the G6PC2-ABCB11 Locus

    Get PDF
    Genome wide association studies (GWAS) for fasting glucose (FG) and insulin (FI) have identified common variant signals which explain 4.8% and 1.2% of trait variance, respectively. It is hypothesized that low-frequency and rare variants could contribute substantially to unexplained genetic variance. To test this, we analyzed exome-array data from up to 33,231 non-diabetic individuals of European ancestry. We found exome-wide significant (P<5×10-7) evidence for two loci not previously highlighted by common variant GWAS: GLP1R (p.Ala316Thr, minor allele frequency (MAF)=1.5%) influencing FG levels, and URB2 (p.Glu594Val, MAF = 0.1%) influencing FI levels. Coding variant associations can highlight potential effector genes at (non-coding) GWAS signals. At the G6PC2/ABCB11 locus, we identified multiple coding variants in G6PC2 (p.Val219Leu, p.His177Tyr, and p.Tyr207Ser) influencing FG levels, conditionally independent of each other and the non-coding GWAS signal. In vitro assays demonstrate that these associated coding alleles result in reduced protein abundance via proteasomal degradation, establishing G6PC2 as an effector gene at this locus. Reconciliation of single-variant associations and functional effects was only possible when haplotype phase was considered. In contrast to earlier reports suggesting that, paradoxically, glucose-raising alleles at this locus are protective against type 2 diabetes (T2D), the p.Val219Leu G6PC2 variant displayed a modest but directionally consistent association with T2D risk. Coding variant associations for glycemic traits in GWAS signals highlight PCSK1, RREB1, and ZHX3 as likely effector transcripts. These coding variant association signals do not have a major impact on the trait variance explained, but they do provide valuable biological insights

    Genetic evidence that raised sex hormone binding globulin (SHBG) levels reduce the risk of type 2 diabetes

    Get PDF
    Epidemiological studies consistently show that circulating sex hormone binding globulin (SHBG) levels are lower in type 2 diabetes patients than non-diabetic individuals, but the causal nature of this association is controversial. Genetic studies can help dissect causal directions of epidemiological associations because genotypes are much less likely to be confounded, biased or influenced by disease processes. Using this Mendelian randomization principle, we selected a common single nucleotide polymorphism (SNP) near the SHBG gene, rs1799941, that is strongly associated with SHBG levels. We used data from this SNP, or closely correlated SNPs, in 27 657 type 2 diabetes patients and 58 481 controls from 15 studies. We then used data from additional studies to estimate the difference in SHBG levels between type 2 diabetes patients and controls. The SHBG SNP rs1799941 was associated with type 2 diabetes [odds ratio (OR) 0.94, 95% CI: 0.91, 0.97; P = 2 × 10−5], with the SHBG raising allele associated with reduced risk of type 2 diabetes. This effect was very similar to that expected (OR 0.92, 95% CI: 0.88, 0.96), given the SHBG-SNP versus SHBG levels association (SHBG levels are 0.2 standard deviations higher per copy of the A allele) and the SHBG levels versus type 2 diabetes association (SHBG levels are 0.23 standard deviations lower in type 2 diabetic patients compared to controls). Results were very similar in men and women. There was no evidence that this variant is associated with diabetes-related intermediate traits, including several measures of insulin secretion and resistance. Our results, together with those from another recent genetic study, strengthen evidence that SHBG and sex hormones are involved in the aetiology of type 2 diabetes

    Identification and functional characterization of G6PC2 coding variants influencing glycemic traits define an effector transcript at the G6PC2-ABCB11 locus.

    Get PDF
    Genome wide association studies (GWAS) for fasting glucose (FG) and insulin (FI) have identified common variant signals which explain 4.8% and 1.2% of trait variance, respectively. It is hypothesized that low-frequency and rare variants could contribute substantially to unexplained genetic variance. To test this, we analyzed exome-array data from up to 33,231 non-diabetic individuals of European ancestry. We found exome-wide significant (P<5×10-7) evidence for two loci not previously highlighted by common variant GWAS: GLP1R (p.Ala316Thr, minor allele frequency (MAF)=1.5%) influencing FG levels, and URB2 (p.Glu594Val, MAF = 0.1%) influencing FI levels. Coding variant associations can highlight potential effector genes at (non-coding) GWAS signals. At the G6PC2/ABCB11 locus, we identified multiple coding variants in G6PC2 (p.Val219Leu, p.His177Tyr, and p.Tyr207Ser) influencing FG levels, conditionally independent of each other and the non-coding GWAS signal. In vitro assays demonstrate that these associated coding alleles result in reduced protein abundance via proteasomal degradation, establishing G6PC2 as an effector gene at this locus. Reconciliation of single-variant associations and functional effects was only possible when haplotype phase was considered. In contrast to earlier reports suggesting that, paradoxically, glucose-raising alleles at this locus are protective against type 2 diabetes (T2D), the p.Val219Leu G6PC2 variant displayed a modest but directionally consistent association with T2D risk. Coding variant associations for glycemic traits in GWAS signals highlight PCSK1, RREB1, and ZHX3 as likely effector transcripts. These coding variant association signals do not have a major impact on the trait variance explained, but they do provide valuable biological insights
    corecore