125 research outputs found

    Dynamics of porous and amorphous magnesium borohydride to understand solid state Mg-ion-conductors

    Get PDF
    Rechargeable solid-state magnesium batteries are considered for high energy density storage and usage in mobile applications as well as to store energy from intermittent energy sources, triggering intense research for suitable electrode and electrolyte materials. Recently, magnesium borohydride, Mg(BH4_{4})2_{2}, was found to be an effective precursor for solid-state Mg-ion conductors. During the mechanochemical synthesis of these Mg-ion conductors, amorphous Mg(BH4_{4})2_{2} is typically formed and it was postulated that this amorphous phase promotes the conductivity. Here, electrochemical impedance spectroscopy of as-received γ-Mg(BH4_{4})2_{2} and ball milled, amorphous Mg(BH4_{4})2_{2} confirmed that the conductivity of the latter is ~2 orders of magnitude higher than in as-received γ-Mg(BH4_{4})2_{2} at 353 K. Pair distribution function (PDF) analysis of the local structure shows striking similarities up to a length scale of 5.1 Å, suggesting similar conduction pathways in both the crystalline and amorphous sample. Up to 12.27 Å the PDF indicates that a 3D net of interpenetrating channels might still be present in the amorphous phase although less ordered compared to the as-received γ-phase. However, quasi elastic neutron scattering experiments (QENS) were used to study the rotational mobility of the [BH4_{4}] units, revealing a much larger fraction of activated [BH4_{4}] rotations in amorphous Mg(BH4_{4})2_{2}. These findings suggest that the conduction process in amorphous Mg(BH4_{4})2_{2} is supported by stronger rotational mobility, which is proposed to be the so-called “paddle-wheel” mechanism

    Kinetic alteration of the 6Mg(NH2)2-9LiH-LiBH4 system by co-adding YCl3 and Li3N

    Get PDF
    The 6Mg(NH2)2-9LiH-LiBH4 composite system has a maximum reversible hydrogen content of 4.2 wt% and a predicted dehydrogenation temperature of about 64 °C at 1 bar of H2. However, the existence of severe kinetic barriers precludes the occurrence of de/re-hydrogenation processes at such a low temperature (H. Cao, G. Wu, Y. Zhang, Z. Xiong, J. Qiu and P. Chen, J. Mater. Chem. A, 2014, 2, 15816-15822). In this work, Li3N and YCl3 have been chosen as co-additives for this system. These additives increase the hydrogen storage capacity and hasten the de/re-hydrogenation kinetics: a hydrogen uptake of 4.2 wt% of H2 was achieved in only 8 min under isothermal conditions at 180 °C and 85 bar of H2 pressure. The re-hydrogenation temperature, necessary for a complete absorption process, can be lowered below 90 °C by increasing the H2 pressure above 185 bar. Moreover, the results indicate that the hydrogenation capacity and absorption kinetics can be maintained roughly constant over several cycles. Low operating temperatures, together with fast absorption kinetics and good reversibility, make this system a promising on-board hydrogen storage material. The reasons for the improved de/re-hydrogenation properties are thoroughly investigated and discussed

    Effect of the particle size evolution on the hydrogen storage performance of KH doped Mg NH2 2 2LiH

    Get PDF
    In recent years, many solid state hydride based materials have been considered as hydrogen storage systems for mobile and stationary applications. Due to a gravimetric hydrogen capacity of 5.6 wt and a dehydrogenation enthalpy of 38.9 kJ mol H2, Mg NH2 2 amp; 8201; amp; 8201;2LiH is considered a potential hydrogen storage material for solid state storage systems to be coupled with PEM fuel cell devices. One of the main challenges is the reduction of dehydrogenation temperature since this system requires high dehydrogenation temperatures amp; 8201;200 C . The addition of KH to this system significantly decreases the dehydrogenation onset temperature to 130 C. On the one hand, the addition of KH stabilizes the hydrogen storage capacity. On the other hand, the capacity is reduced by 50 from 4.1 to 2 after the first 25 cycles. In this work, the particle sizes of the overall hydride matrix and the potassium containing species are investigated during hydrogen cycling. Relation between particle size evolution of the additive and hydrogen storage kinetics is described by using an advanced synchrotron based technique Anomalous small angle X ray scattering, which was applied for the first time at the potassium K edge for amide hydride hydrogen storage systems. The outcomes from this investigation show that, the nanometric potassium containing phases might be located at the reaction interfaces, limiting the particle coarsening. Average diameters of potassium containing nanoparticles double after 25 cycles from 10 to 20 nm . Therefore, reaction kinetics at subsequent cycles degrade. The deterioration of the reaction kinetics can be minimized by selecting lower absorption temperatures, which mitigates the particle size growth, resulting in two times faster reaction kinetic

    Association of Impulsivity and Polymorphic MicroRNA-641 Target Sites in the SNAP-25 Gene.

    Get PDF
    Impulsivity is a personality trait of high impact and is connected with several types of maladaptive behavior and psychiatric diseases, such as attention deficit hyperactivity disorder, alcohol and drug abuse, as well as pathological gambling and mood disorders. Polymorphic variants of the SNAP-25 gene emerged as putative genetic components of impulsivity, as SNAP-25 protein plays an important role in the central nervous system, and its SNPs are associated with several psychiatric disorders. In this study we aimed to investigate if polymorphisms in the regulatory regions of the SNAP-25 gene are in association with normal variability of impulsivity. Genotypes and haplotypes of two polymorphisms in the promoter (rs6077690 and rs6039769) and two SNPs in the 3' UTR (rs3746544 and rs1051312) of the SNAP-25 gene were determined in a healthy Hungarian population (N = 901) using PCR-RFLP or real-time PCR in combination with sequence specific probes. Significant association was found between the T-T 3' UTR haplotype and impulsivity, whereas no association could be detected with genotypes or haplotypes of the promoter loci. According to sequence alignment, the polymorphisms in the 3' UTR of the gene alter the binding site of microRNA-641, which was analyzed by luciferase reporter system. It was observed that haplotypes altering one or two nucleotides in the binding site of the seed region of microRNA-641 significantly increased the amount of generated protein in vitro. These findings support the role of polymorphic SNAP-25 variants both at psychogenetic and molecular biological levels

    Polymorphism in the Tyrosine Hydroxylase (TH) Gene Is Associated with Activity-Impulsivity in German Shepherd Dogs

    Get PDF
    We investigated the association between repeat polymorphism in intron 4 of the tyrosine hydroxylase (TH) gene and two personality traits, activity-impulsivity and inattention, in German Shepherd Dogs. The behaviour of 104 dogs was characterized by two instruments: (1) the previously validated Dog-Attention Deficit Hyperactivity Disorder Rating Scale (Dog-ADHD RS) filled in by the dog owners and (2) the newly developed Activity-impulsivity Behavioural Scale (AIBS) containing four subtests, scored by the experimenters. Internal consistency, inter-observer reliability, test-retest reliability and convergent validity were demonstrated for AIBS

    Association between Age and the 7 Repeat Allele of the Dopamine D4 Receptor Gene

    Get PDF
    Longevity is in part (25%) inherited, and genetic studies aim to uncover allelic variants that play an important role in prolonging life span. Results to date confirm only a few gene variants associated with longevity, while others show inconsistent results. However, GWAS studies concentrate on single nucleotide polymorphisms, and there are only a handful of studies investigating variable number of tandem repeat variations related to longevity. Recently, Grady and colleagues (2013) reported a remarkable (66%) accumulation of those carrying the 7 repeat allele of the dopamine D4 receptor gene in a large population of 90-109 years old Californian centenarians, as compared to an ancestry-matched young population. In the present study we demonstrate the same association using continuous age groups in an 18-97 years old Caucasian sample (N = 1801, p = 0.007). We found a continuous pattern of increase from 18-75, however frequency of allele 7 carriers decreased in our oldest age groups. Possible role of gene-environment interaction effects driven by historical events are discussed. In accordance with previous findings, we observed association preferentially in females (p = 0.003). Our results underlie the importance of investigating non-disease related genetic variants as inherited components of longevity, and confirm, that the 7-repeat allele of the dopamine D4 receptor gene is a longevity enabling genetic factor, accumulating in the elderly female population

    Genetic Epidemiology of Attention Deficit Hyperactivity Disorder (ADHD Index) in Adults

    Get PDF
    Context: In contrast to the large number of studies in children, there is little information on the contribution of genetic factors to Attention Deficit Hyperactivity Disorder (ADHD) in adults. Objective: To estimate the heritability of ADHD in adults as assessed by the ADHD index scored from the CAARS (Conners’ Adult ADHD Rating Scales). Design: Phenotype data from over 12,000 adults (twins, siblings and parents) registered with the Netherlands Twin Register were analyzed using genetic structural equation modeling. Main outcome measures: Heritability estimates for ADHD from the twin-family study. Results: Heritability of ADHD in adults is estimated around 30 % in men and women. There is some evidence for assortative mating. All familial transmission is explained by genetic inheritance, there is no support for the hypothesis that cultural transmission from parents to offspring is important. Conclusion: Heritability for ADHD features in adults is present, but is substantially lower than it is in children

    Identification of PRRT2 as the causative gene of paroxysmal kinesigenic dyskinesias

    Get PDF
    Paroxysmal kinesigenic dyskinesias is a paroxysmal movement disorder characterized by recurrent, brief attacks of abnormal involuntary movements induced by sudden voluntary movements. Although several loci, including the pericentromeric region of chromosome 16, have been linked to paroxysmal kinesigenic dyskinesias, the causative gene has not yet been identified. Here, we identified proline-rich transmembrane protein 2 (PRRT2) as a causative gene of paroxysmal kinesigenic dyskinesias by using a combination of exome sequencing and linkage analysis. Genetic linkage mapping with 11 markers that encompassed the pericentromeric of chromosome 16 was performed in 27 members of two families with autosomal dominant paroxysmal kinesigenic dyskinesias. Then, the whole-exome sequencing was performed in three patients from these two families. By combining the defined linkage region (16p12.1–q12.1) and the results of exome sequencing, we identified an insertion mutation c.649_650InsC (p.P217fsX7) in one family and a nonsense mutation c.487C>T (p.Q163X) in another family. To confirm our findings, we sequenced the exons and flanking introns of PRRT2 in another three families with paroxysmal kinesigenic dyskinesias. The c.649_650InsC (p.P217fsX7) mutation was identified in two of these families, whereas a missense mutation, c.796C>T (R266W), was identified in another family with paroxysmal kinesigenic dyskinesias. All of these mutations completely co-segregated with the phenotype in each family. None of these mutations was identified in 500 normal unaffected individuals of matched geographical ancestry. Thus, we have identified PRRT2 as the first causative gene of paroxysmal kinesigenic dyskinesias, warranting further investigations to understand the pathogenesis of this disorder

    DRD4 Polymorphism Moderates the Effect of Alcohol Consumption on Social Bonding

    Get PDF
    Development of interpersonal relationships is a fundamental human motivation, and behaviors facilitating social bonding are prized. Some individuals experience enhanced reward from alcohol in social contexts and may be at heightened risk for developing and maintaining problematic drinking. We employed a 3 (group beverage condition) ×2 (genotype) design (N = 422) to test the moderating influence of the dopamine D4 receptor gene (DRD4 VNTR) polymorphism on the effects of alcohol on social bonding. A significant gene x environment interaction showed that carriers of at least one copy of the 7-repeat allele reported higher social bonding in the alcohol, relative to placebo or control conditions, whereas alcohol did not affect ratings of 7-absent allele carriers. Carriers of the 7-repeat allele were especially sensitive to alcohol's effects on social bonding. These data converge with other recent gene-environment interaction findings implicating the DRD4 polymorphism in the development of alcohol use disorders, and results suggest a specific pathway by which social factors may increase risk for problematic drinking among 7-repeat carriers. More generally, our findings highlight the potential utility of employing transdisciplinary methods that integrate genetic methodologies, social psychology, and addiction theory to improve theories of alcohol use and abuse

    The neurobiological link between OCD and ADHD

    Get PDF
    corecore