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1 Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary, 2 Institute of Psychology, Eotvos Lorand

University, Budapest, Hungary

Abstract

Impulsivity is a personality trait of high impact and is connected with several types of maladaptive behavior and psychiatric
diseases, such as attention deficit hyperactivity disorder, alcohol and drug abuse, as well as pathological gambling and
mood disorders. Polymorphic variants of the SNAP-25 gene emerged as putative genetic components of impulsivity, as
SNAP-25 protein plays an important role in the central nervous system, and its SNPs are associated with several psychiatric
disorders. In this study we aimed to investigate if polymorphisms in the regulatory regions of the SNAP-25 gene are in
association with normal variability of impulsivity. Genotypes and haplotypes of two polymorphisms in the promoter
(rs6077690 and rs6039769) and two SNPs in the 39 UTR (rs3746544 and rs1051312) of the SNAP-25 gene were determined in
a healthy Hungarian population (N = 901) using PCR–RFLP or real-time PCR in combination with sequence specific probes.
Significant association was found between the T–T 39 UTR haplotype and impulsivity, whereas no association could be
detected with genotypes or haplotypes of the promoter loci. According to sequence alignment, the polymorphisms in the
39 UTR of the gene alter the binding site of microRNA-641, which was analyzed by luciferase reporter system. It was
observed that haplotypes altering one or two nucleotides in the binding site of the seed region of microRNA-641
significantly increased the amount of generated protein in vitro. These findings support the role of polymorphic SNAP-25
variants both at psychogenetic and molecular biological levels.
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Introduction

Impulsivity is a multidimensional personality trait characterized

by action without planning and lack of consciousness to guide acts

and behavior [1]. The phenotype is based on a complex

neurochemical background, and genetic factors play a crucial

role in its development, twin studies suggested that inheritance

plays approximately 45% role in its determination [2]. There is a

relatively broad spectrum of individual differences in healthy

subjects regarding their impulsivity, therefore to summarize this

trait in one specific definition has been a challenge for many

decades. There is an agreement however that major deflection of

impulsivity is one important component of Attention Deficit

Hyperactivity Disorder (ADHD) together with impaired attention

and/or hyperactivity [3].

Recent studies have focused mainly on the serotonergic [4] and

dopaminergic [5] system investigating the genetic background of

impulsivity, and our group has also previously shown the

importance of the interaction between these two systems [6].

Further studies showed an association between impulsivity and a

functional dinucleotide repeat polymorphism in the promoter

region of NOS1 gene (exon 1f-VNTR) [7,8], and the rs11624704

of the neurexin gene (NRXN) was also suggested to contribute to

the background of impulsivity [9].

Impulsivity is one of the core features characterizing ADHD,

thus, candidate genes shown to associate with ADHD might

emerge as putative genetic components of impulsivity. A number

of association studies as well as meta-analyses suggested the role of

DRD4, DRD5, HTR1B and SLC6A3 genes, reviewed by Faraone

[10]. Moreover, several studies pointed out an association between

two SNPs (rs3746544 and rs1051312) in the 39 UTR of the SNAP-

25 gene and ADHD [11,12,13], and the role of the former

polymorphism was also confirmed in a comprehensive meta-

analysis [14]. Genetic variants of SNAP-25 including promoter

polymorphisms [10,12,15], have already been investigated as

putative risk factors of other psychiatric disorders as well [16,17],

but it has not yet been studied in the background of impulsivity in

a non-clinical sample.

SNAP-25 (synaptosomal-associated protein, 25 kDa) plays a

crucial role in the central nervous system, being one essential

component of the SNARE (soluble N-ethylmaleimide-sensitive

factor attachment protein receptors) complex and contributes to

exocytosis by targeting and fusion of vesicles to the cell membrane

[18]. There are two SNPs (rs3746544 and rs1051312) in the 39

UTR of the SNAP-25 gene with special interest, we previously

demonstrated by in silico sequence analysis that they are localized

in the putative target site of miR-641 [19].

As microRNAs are known to play a role as translational

regulators of protein synthesis, SNPs located either in the coding
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sequences of microRNAs or in their binding sites might cause an

imbalance of this regulation. SNPs have been described in

genomic regions encoding miRNAs [20], the rs1625579 polymor-

phism is located in the coding region of miR-137, which has been

shown to target the ZNF804A, a candidate gene of schizophrenia

[21]. However, more attention have been focused on the

significantly higher number of SNPs that are present in the 39

UTR of target genes altering the binding region of a miRNA to its

specific target mRNA [20]. Polymorphisms in the microRNA-

binding sites have been suggested to contribute to the genetic

background of various diseases, such as coronary heart disease

[22], different types of cancer [23,24] or ADHD and other co-

morbid psychiatric illnesses [12,25]. A polymorphic variant

(rs13212041) in the HTR1B gene 39 UTR was demonstrated to

influence miR-96 binding and to be associated with conduct-

disorder phenotype in a sample of 359 students [26].

Here we present data on the functional effect of rs3746544 and

rs1051312 SNPs and their haplotypes on miR-641 regulated

reporter gene expression in cell culture. We also aimed to carry

out an association study to analyze whether either these loci or the

polymorphic variants of the SNAP-25 promoter (rs6077690 AT

and rs6039769 AC), studied so far in psychiatric disorders,

contribute to the genetic background of impulsivity in a non-

clinical sample.

Methods

Ethics Statement, Participants
901 healthy Hungarian young adults participated in the study.

Selection criteria included no past or present psychiatric history

(based on self-report). Before providing buccal samples for genetic

analysis, participants signed written informed consent. The study

protocol was approved by the Scientific and Research Ethics

Committee of the Medical Research Council (ETT TUKEB). The

mean age of the investigated population was 21.3 (63.3) years,

45.1% were males and 54.9% were females.

Phenotype analysis
Hungarian version of the 11th revised Barratt Impulsiveness

Scale [27] was used to measure impulsivity. The questionnaire was

originally published by Barratt. Translation into Hungarian was

carried out by a ‘‘forward-backward’’ procedure [6], Cronbach

alpha value for the total score of the scale was 0.808.

The Barratt Scale is a self-reporting measure widely used both

by clinicians and in research settings. It consists of 30 items

regarding acting and thinking in different situations. These

statements are asked to be rated by the participant on a four-

point-scale, reaching from ‘‘occasionally’’ to ‘‘always’’. The highest

theoretically possible total score is 120 and impulsivity is

considered ‘‘normal’’ in the range from 52 to 71.

DNA isolation
DNA purification was initiated by incubating the buccal

samples at 56uC overnight in 0.2 mg/ml Proteinase K cell lysis

buffer. It was followed by protein denaturation using saturated

NaCl solution. Finally, DNA was precipitated using isopropanol

and ethanol by standard procedures and DNA pellet was

resuspended in 100 ml 0.56 TE (16 TE: 10 mM Tris pH = 8,

1 mM EDTA) buffer. Concentration of each DNA-sample was

measured by Varioscan Flash spectral scanning multimode reader.

Genotyping of SNAP-25 SNPs
The promoter SNP rs6039769 was genotyped by the

C__29497348_10 (Life Technologies) pre-designed primer- and

TaqMan probe-set. A 7300 Real-Time PCR System (Life

Technologies) was employed to detect the FAM and VIC signals

corresponding to the C and A alleles, respectively.

Genotypes of rs6077690 promoter SNP were determined by

PCR-RFLP. Flanking region of the polymorphic site was amplified

using the 59 ATG TCA GTG TGG GGC ATC 39 sense and 59

AGG CAT GTT GCT GAA ATT TGT T 39 antisense primers.

The Qiagen HotStarTaq DNA-polymerase system was applied for

PCR amplification, the reactions were carried out in a total

volume of 10 mL containing 1 mM sense and antisense primers,

0.2 mM of each deoxyribonucleotide-triphosphate, 0.25 U Hot-

StarTaq DNA-polymerase together with 16 buffer and 16 Q-

solution and approximately 4 ng genomic DNA sample. Thermo-

cycle was initiated by 15 min at 95uC initial denaturation and

polymerase activation. It was followed by 40 cycles of 1 min

denaturation at 94uC, 30 sec annealing at 63uC and 1 min

extension at 72uC. The last step of the PCR was a final extension

at 72uC for 10 minutes, amplicons were then kept at 8uC for

downstream processing. In the next step PCR-products were

digested by TspI 509 restriction endonuclease. Two non-specific

recognition sites were incorporated in the amplicons to verify

optimal conditions of digestion. Reactions were carried out

accoriding to manufacturer’s instructions. A 301- and a 110-bp-

long product (together with the two control fragments) were

generated in the presence of the A allele, whereas the 411-bp long

fragment could be seen in case of the T allele. Digestion pattern

was analyzed by traditional submarine gel electrophoresis. Call

rate of genotyping was 97%.

Direct haplotyping of SNAP-25 39 UTR SNPs
As the two SNPs (rs3746544 and rs1051312) in the 39 UTR are

separated by only 3 basepairs from each other, it was possible to

identify haplotypes directly in each individual sample using the

published ‘‘double-tube’’ method [19]. In summary, the method is

based on the application of haplotype-specific TaqMan probes in a

real-time polymerase chain reaction. Two simultaneous analyses

contained the four different probes corresponding to the four

haplotypes labeled by FAM and VIC, respectively. Amplification

and data-collection were done by a 7300 Real-Time PCR System

(Life Technologies). Call rate was 98%. Individual genotypes of

rs3746544 and rs1051312 were deduced from haplotype data.

Haplotype analysis of SNAP-25 promoter SNPs
SNPs in the promoter were about 1.5 kb apart from each other

which provided rather limited possibilities for simultaneous

analysis and thus direct haplotype determination. Therefore

individual haplotypes for these SNPs were calculated from

genotype data. Haplotype was ambiguous only in case of double

heterozygote individuals (rs6077690 AT and rs6039769 AC; i.e.

either A–A/T–C or A–C/T–A). Linkage disequilibrium analysis,

however, revealed that the frequency of the T–A haplotype was as

low as 0.6%. As a total of 103 double heterozygotes were identified

in our sample, approximately 1 participant was mathematically

expected to possess the rare T–A haplotype (i.e. A–C/T–A), which

was neglected. Using this assumption, the haplotypes of double

heterozygotes were also able to be identified from the genotypes,

as these haplotypes were considered to be A–A/T–C. To confirm

this approach, haplotypes were also reconstructed by Phase 2.1,

which provided the same result for each sample [28].

Plasmid constructs
The entire 39 UTR region of the human SNAP-25 gene was

cloned behind the firefly luciferase gene at the multicloning site of

the pMIR-REPORT Luciferase miRNA Expression Reporter

Impulsivity and miRNA Target SNPs in the SNAP-25
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Vector (Life Technologies), using the 59 TGT AAT GAG CTC
CTG GGA AGT GGT TAA GTG T 39 sense and antisense 59

CCC GAC AAG CTT AAA CTA GCT ACA AAA TGT CAA

TCA 39 primers. Bold italic letters show the recognition sites of Sac

I and Hind III restriction endonucleases in the sense and antisense

primers, respectively. Genomic DNA possessing a TT haplotype

was applied to amplify the SNAP-25 39 UTR, constructs with the

GC, GT and TC haplotypes were subcloned by QuickChange

Lightning Site-Directed Mutagenesis kit (Agilent Technologies).

All four constructs were verified by direct sequencing. Another

pMIR construct was used as internal control, which contained an

insert with same length but different sequence and most

importantly missing the binding site of the analyzed miR-641.

Cell culture and transient transfections
Human embryonic kidney (HEK) 293 cells (purchased from

Sigma-Aldrich Ltd. Budapest, Hungary) were cultured in 24-well

tissue culture plates in DMEM supplemented with 10% fetal

bovine serum and 1% penicillin solution at 37uC in a humidified

atmosphere containing 5% CO2. After optimization experiments

0.05 mg of the pMIR reporter constructs, 5 pmol miR641 and

0.2 mg b-galactosidase constructs were co-transfected in a reaction

mixture containing 2.5 ml Lipofectamin and 60 ml OptiMem.

Cells were incubated at 37uC after transfection.

Luciferase and b-galactosidase assay
Medium was removed 36 hours after transfection and cells were

washed twice in phosphate buffered saline, and the cell extracts

were suspended in 100 mL 250 mM Tris-HCl buffer.

Cell lysis was carried out by three consecutive freeze-thaw

cycles, lysate was centrifuged (13000 rpm for 15 minutes at 4uC)

and the supernatans were collected for luciferase and b-

galactosidase activity measurements.

Luciferase activity was detected by adding 60 mL of luciferin

reagent to 12 mL sample, b-galactosidase activity was measured by

adding a reaction mixture containing 33 mL ONPG solution

(ortho-nitrophenil-b-galactoside) to 20 mL sample, respectively.

Fluorescence and luminescence values were measured using the

Varioscan Flash spectral scanning multimode reader (Thermo-

Scientific). Analyses were carried out in triplicates.

Statistical analysis
Raw data of luciferase enzyme activities were normalized to the

b-galactosidase levels for each sample. Statistical analysis was

performed with the Tukey-Kramer multiple comparisons test. P

values lower than 0.05 were considered to be statistically

significant. D9 and R2 measures of linkage disequilibrium were

assessed using HaploView v4.2.

Genetic association analyses were carried out using SPSS 19.0

for Windows. Chi-square analyses were applied to test if genotype

frequency distributions corresponded to Hardy–Weinberg-equi-

librium. Independent-Samples t-test was used to test genetic

associations by one way analyses of covariance (ANCOVA)

assuming a bi-allelic inheritance model and co-dominant inher-

itance.

Results

Genotype and haplotype frequencies of SNAP-25
promoter and 39 UTR region in healthy participants of
European descent

Allele- and genotype distribution together with haplotype

frequencies of two promoter polymorphisms (rs6039769 and

rs6077690) as well as those of the two SNPs in the 39 UTR

(rs3746544 and rs1051312) of the SNAP25 gene were determined

in a healthy Hungarian population (N = 901). Genotype distribu-

tions were in Hardy–Weinberg-equilibrium for each SNP, minor

allele frequencies varied between 0.255 and 0.417 (Table 1). As the

two SNPs of the 39 UTR were in close proximity (see Table 1 for

genomic localization), a direct haplotype determination was

possible to perform for each individual DNA samples using

haplotype-specific TaqMan probes, and genotypes were deduced

from haplotype data. On the other hand, the two SNPs of the

promoter region were genotyped individually as their greater

distance did not allow a direct haplotype analysis, and haplotype

frequencies were estimated by calculation. Analysis of the 39 UTR

haplotypes confirmed our previous result [19], that the G–C

haplotype did not occur at all in the population. Interestingly a

similar situation was observed regarding the promoter haplotypes.

Although the T–A haplotype was not absent completely, its

frequency (0.006) was much lower than expected (0.161). This

resulted in a special type of linkage disequilibrium characterized

by a high Lewontin’s D9 value, together with a relatively low R2.

On the other hand absolutely no linkage disequilibrium could be

observed between the promoter and the 39 UTR region (Figure 1).

Association analysis of SNAP-25 SNPs and impulsivity
As a first step, a single marker analysis was used by comparing

the average impulsivity scores of participants in the different

genotype categories (Table 2). No association could be detected

with the promoter SNPs. On the other hand, one of the 39 UTR

(rs1051312) polymorphism showed a nominal association with

Barratt-scores of impulsivity (p = 0.042) which disappeared after

Bonferroni correction for multiple test (4 SNPs: p,0.0125).

As a second step, we applied a haplotype-based allele-wise

analysis for the promoter and the 39 UTR SNPs, separately. No

association was found between the estimated promoter haplotypes

and total impulsivity scores (data not shown). It is important to

note that the 39 UTR haplotypes were not estimated but

determined in each subject individually by molecular methods

(see the ‘‘Methods’’ section). It was observed, that individuals

possessing the T–T haplotype of the rs3746544 and rs1051312

SNPs achieved a lower total Barratt-score (58.24) compared to

participants without this haplotype (59.63), and this effect was

significant either calculating for the three haplotype categories

(p = 0.009), or opposing the T–T haplotype (associating with lower

Figure 1. Linkage disequilibrium analysis of the two promoter
(rs6077690 AT and rs6039769 AC) and two 39 UTR (rs3746544
GT and rs1051312 CG) SNPs. Left panel: Lewontin9s D9 values, right
panel: R2 measure of LD. High D9 together with relatively low R2 values
in the promoter as well as in the 39 UTR region suggest a partial linkage
disequilibrium characterized by the decreased frequency of one
haplotype combination compared to expected data. No LD could be
observed between the promoter and the 39 UTR regions.
doi:10.1371/journal.pone.0084207.g001
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impulsivity scores) to the others (p = 0.003). In other words, the 39

UTR haplotypes of the SNAP-25 gene had a more pronounced

effect on the measured phenotype than the contributing SNPs,

separately.

Functional analysis of SNAP-25 39 UTR haplotypes
Based on the results of the association study, the 39 UTR

haplotypes showing an association with impulsivity were subjected

to in vitro functional analysis. According to sequence alignment

analysis both SNPs (rs3746544 and rs1051312) in the 39 UTR are

supposed to alter duplex formation of miR-641 and SNAP-25

mRNA, as the two polymorphisms are localized in the target site

of the seed region of the miRNA-641 (Figure 2A). To study the

molecular effect of the target sequence variants, pMIR-REPORT

luciferase constructs containing the complete 39 UTR region with

the different haplotype variants were analyzed. This included the

G–C haplotype as well, although it could not be detected in our

investigated population. The lowest relative luciferase activity

could be observed in case of the T–T haplotype, which generates a

perfect target sequence for the seed region of miR-641. A single

nucleotide change of the target sequence in constructs with the G–

T and T–C haplotypes resulted in a 1.8 and a 2.1-fold elevation of

relative luciferase activity, respectively. Although the single

nucleotide change elevated significantly the reporter activity,

there was no difference between G–T and T–C haplotypes,

suggesting that a single base change alters significantly the binding

of miR-641, but the position of the SNP within the seed region

does not play a crucial role in this system. The G–C haplotype

resulted in two mismatches in the target region of miR-641, and

caused a 4.6-fold higher luciferase activity compared to the T–T

form (Figure 2B), demonstrating that two mismatches in the target

sequence have a more pronounced effect on miRNA function than

one mismatch. The control construct had the same length, but an

independent sequence without any binding site of miR-641. As

expected, the corresponding luciferase activity was significantly

higher than that of any of the constructs containing the 39 UTR of

the SNAP-25 gene.

Discussion

Recent studies have demonstrated that regulation of protein

synthesis is much more complex than was earlier predicted. One

major component of this network is the system of micro-RNAs

(miRNAs) demonstrated by the fact that as high as 5% of the genes

are predicted to encode miRNAs. It is also noteworthy that at least

30% of protein coding genes are suggested to be regulated by

miRNAs [29], while this number could reach even 60% according

to other estimations [30]. Alterations in miRNA profiles have been

shown in the background of several illnesses, such as cancers,

autoimmune diseases or cardiovascular disorders [31]. MiRNA

profiling can be a useful tool in tumor diagnostics [32], and several

miRNA-based therapeutic protocols have been elaborated. For

example a miR-122 inhibitor was shown to decrease the amount

of hepatitis C virus RNA, whereas a modulator of miR-208 level

seemed to be effective against cardiac hypertrophy [33].

As a single miRNA might regulate a set of target genes, or the 39

UTR of a specific mRNA might bind a number of miRNAs, the

translational regulation by microRNAs is a complex system.

Interestingly, as few as 20 SNPs have been identified in genomic

regions coding for miRNA seed sequences. On the other hand,

more than a hundred thousand SNPs are predicted to change

miRNA target sites, but less than 1% of these functional variants

have been validated experimentally [30].

The rs3746544 and rs1051312 SNPs in the 39 UTR region of

the SNAP-25 gene have been thoroughly investigated as possible

Table 1. Genotype and haplotype frequencies of the assessed SNPs in the SNAP-25 gene.

SNP Position on chromosome 20 Hardy–Weinberg p Minor allele and its frequency (MAF)

rs6077690 AT 10,197,461 0.8899 A: 0.417

rs6039769 AC 10,198,954 0.4417 A: 0.276

rs3746544 GT 10,287,084 0.7394 G: 0.391

rs1051312 CG 10,287,088 0.1909 C: 0.255

rs6077690 AT – rs6039769 AC rs3746544 GT – rs1051312 CG

Haplotype Frequency Haplotype Frequency

TC 0.579 GT 0.391

AA 0.269 TT 0.354

AC 0.146 TC 0.255

TA 0.006 GC 0

doi:10.1371/journal.pone.0084207.t001

Table 2. Association analysis between the SNAP-25 SNPs and
impulsivity.

SNP Genotype N Mean STD P

GG 134 59.86 9.4

rs3746544 GT 393 59.30 10.0 0.335

TT 374 58.56 9.1

CC 49 62.39 9.2

rs1051312 CT 326 59.02 9.6 0.042

TT 526 58.80 9.5

AA 17 63.53 9.0

rs6039769 AC 80 62.89 10.0 0.934

CC 106 63.38 9.7

AA 38 64.79 8.9

rs6077690 AT 95 62.26 10.3 0.411

TT 69 62.97 9.7

N: number of individuals possessing the given genotype, STD: standard
deviation, P: level of statistical significance.
doi:10.1371/journal.pone.0084207.t002
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risk factors of ADHD [34,35,36] or bipolar disorder [12], however

the molecular function of these variants has not yet been studied.

Thus the question has been raised if these SNPs are genetic

markers or causal polymorphisms [14], and according to our

knowledge, our study is the first to analyze the effect of these SNPs

on miRNA binding efficiency. Both studied SNPs are localized in

the binding region of miR-641 in a close proximity of each other.

Here we demonstrated that a single mismatch in the 39 UTR of

the SNAP-25 gene caused by any of the two SNPs resulted in

about 2-fold reporter activity, while the rs3746544 G–rs1051312

C haplotype possessing two mismatches in the miR-641 target site

led to a more than 4-fold elevation in the luciferase level. These

results confirm the molecular functional role of rs3746544 and

rs1051312 haplotypes in the SNAP-25 gene and are in agreement

with the results of previous studies demonstrating the importance

of optimal SNAP-25 level. The coloboma mouse, which is the

animal model of ADHD has SNAP-25 deficiency and changes in

SNAP-25 expression were shown to play a role in altered neuronal

function [37]. It was also demonstrated, that atomoxetine which is

an orally administered medicine used for the treatment of ADHD

resulted in the significant up-regulation of SNAP-25 both on

mRNA and protein level [38].

Here we aimed to investigate the impulsive behavior of a

healthy population of European descent, and found a nominally

significant association (p = 0.042) between rs1051312 and impul-

sivity which did not survive the Bonferroni correction for multiple

testing (p,0.0125 for 4 SNPs). If, however, the 39 UTR

haplotypes were applied in the association study instead of the

SNPs, lower impulsivity scores were observed in the presence of

the T–T haplotype of the rs3746544 and rs1051312 SNPs as

compared to the other haplotypes (p = 0.003). These results are in

good agreement with our data obtained by the molecular analysis

where the lowest reporter activity was measured in the presence of

the 39 UTR with T–T haplotype. Our findings are also in

agreement with family studies, which showed association between

the rs3746544G [39] and the rs1051312C alleles [40], although

these results were not significant.

On the other hand the T allele of both SNPs was also shown to

be the risk factor of ADHD. It is also notable, however, that the

association had a modest statistical significance [10] and odds ratio

was 1.15 and 1.06 for the rs3746544 and rs1051312 SNPs,

respectively [14]. This shows that SNAP-25 is only one of the

numerous genetic components of this phenotype. Taking into

consideration that our study investigated impulsivity instead of

ADHD in a healthy population, all data support, that SNAP-25 is

one of the several genetic factors of impulsivity and related

psychiatric disorders. Interestingly the haplotype with double

mismatch (G–C) in the miRNA target site of SNAP-25 gene was

completely undetectable in our healthy population of European

descent (Hungarian) according to our previous [19] and current

studies. It is important to note that haplotypes were not estimated

but individually measured by a direct molecular haplotype analysis

method developed earlier [19,41]. A theoretically possible

explanation of the absence of the G–C haplotype in our healthy

volunteer population could be the more severe effect of this

haplotype on SNAP-25 gene expression leading to pathophysio-

logical consequences. Alternatively, the missing haplotype might

be explained by the evolutionally young age of one of the SNPs,

therefore recombinant haplotypes of these 39 UTR SNPs, could

not spread out in the population yet.

Although the putative biological effect of SNPs in regulatory

regions both in 59 or 39 region is the modulation of protein level by

Figure 2. Effect of the two 39 UTR (rs3746544 GT and rs1051312 CG) SNPs on miR-641 binding. A Sequence alignment of the seed region
of miR-641 and the corresponding SNAP-25 39 UTR region. Bold letters indicate the position of the two polymorphisms, white letters in black
background symbolize the mismatches caused by the SNPs. B Normalized luciferase activities of reporter constructs containing the entire SNAP-25 39
UTR with the four different haplotypes as well as of a control construct containing an insert with identical length, however lacking any binding site of
miR-641. See text for details.
doi:10.1371/journal.pone.0084207.g002
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different mechanisms, interestingly, much less data are available

about the role of 59 polymorphisms of the SNAP-25 gene. The

rs6039769 SNP was shown to be in association with early-onset

bipolar disorder [15], however no association could be found

between ADHD and this locus [13]. On the other hand, the other

polymorphism, located approximately 2 kb 59 from the transcrip-

tional start site (rs6077690) was demonstrated to be in association

with ADHD [13]. Analysis of the two promoter SNPs and their

haplotypes did not reveal any association between the polymor-

phisms and impulsivity. In conclusion, our results confirmed the

findings of previous studies investigating SNAP-25 and ADHD.

Our study focused on a healthy population, but even in this setting

an association could be observed between the haplotypes of the 39

UTR SNPs (rs3746544 and rs1051312) and normal individual

variability of impulsivity. In vitro functional analyses suggested that

these loci are miR-SNPs altering the binding efficiency of miR641

in a luciferase reporter system.
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