43 research outputs found

    A re-entry tachycardia triggered by the spontaneous interruption of an atrial tachycardia.

    Get PDF
    The common atrioventricular nodal re-entry tachycardia is the most common form of paroxysmal supraventricular tachycardia. It starts frequently with a supraventricular ectopic beat that, on finding the fast pathway in refractory period, travels in the slow pathway as to appear as a prolongation of the PR interval on the ECG. In this study, we show a singular case of a common atrioventricular nodal re-entry tachycardia triggered by the spontaneous interruption of an atrial tachycardi

    The supraventricular tachycardias: Proposal of a diagnostic algorithm for the narrow complex tachycardias

    Get PDF
    AbstractThe narrow complex tachycardias (NCTs) are defined by the presence in a 12-lead electrocardiogram (ECG) of a QRS complex duration less than 120ms and a heart rate greater than 100 beats per minute; those are typically of supraventricular origin, although rarely narrow complex ventricular tachycardias have been reported in the literature.As some studies document, to diagnose correctly the NCTs is an arduous exercise because sometimes those have similar presentation on the ECG. In this paper, we have reviewed the physiopathological, clinical, and ECG findings of all known supraventricular tachycardias and, in order to reduce the possible diagnostic errors on the ECG, we have proposed a quick and accurate diagnostic algorithm for the differential diagnosis of NCTs

    Characterization of a 6×6-mm2 75-μm cell MPPC suitable for the Cherenkov Telescope Array project

    Get PDF
    This paper presents the latest characterization results of a novel Low Cross-Talk (LCT) large-area (6×6-mm2) Multi-Pixel Photon Counter (MPPC) detector manufactured by Hamamatsu, belonging to the recent LCT5 family and achieving a fill-factor enhancement and cross-talk reduction. In addition, the newly adopted resin coating is demonstrated to yield improved photon detection capabilities in the 290–350 nm spectral range, making the new LCT MPPC particularly suitable for emerging applications like Cherenkov Telescopes. For a 3×3-mm2 version of the new MPPC under test, a comparative analysis of the large pixel pitch (75-µm) detector versus the smaller pixel pitch (50-µm) detector is also undertaken. Furthermore, measurements of the 6×6-mm2 MPPC response versus the angle of incidence are provided for the characterized device

    Temperature characterization of the CITIROC front-end chip of the ASTRI SST-2M Cherenkov camera

    Get PDF
    The Cherenkov Imaging Telescope Integrated Read Out Chip, CITIROC, is the front-end chip of the camera for the ASTRI SST-2M, one of the prototypes for the small sized telescopes of the Cherenkov Telescope Array, CTA. The telescope, operating in the energy range from a few TeV to beyond 300 TeV, is characterized by innovative technological solutions. The optical system is arranged in a dual-mirror configuration and the focal plane camera consists of a matrix of multi-pixel Silicon Photo-Multipliers. Among others, one of the most important project issue consists in the thermal characterization of the camera that, in the ASTRI SST-2M prototype, is thermo-controlled in a narrow temperature range. A set of at least nine similar telescopes will form the ASTRI mini-array proposed to be installed at the CTA southern site. In the cameras of the ASTRI mini-array telescopes the thermal control could be relaxed with a considerable gain in terms of power consumption, cost and simplicity. So, a study of the temperature dependence of the camera components is needed. The present work addresses this issue showing the results of the measurements carried out on CITIROC as a function of the temperature. We focused our investigation on the pedestal stability, linearity of the charge output signal, preamplifier gain and trigger uniformity in the temperature range 15-30°C. Our results show, for each of the above-mentioned measurable quantities, that temperature dependency is at the level of a few percent

    Scientific report of the project COMpton Polarimeter with Avalanche Silicon readout (COMPASS)

    Get PDF
    Rendicontazione scientifica mandata all'INAF alla conclusione del progetto COMpton Polarimeter with Avalanche Silicon readout (COMPASS), finanziato dal bando TECNO INAF 2014COMpton Polarimeter with Avalanche Silicon readout (COMPASS) is a research and development project that aims to measure the polarization of X-ray photons through Compton Scattering. The measurement is obtained by using a set of small rods of fast scintillation materials with both low-Z (as active scatterer) and high-Z (as absorber), all read-out with Silicon Photomultipliers. By this method we can operate scattering and absorbing elements in coincidence, in order to reduce the background. This is the scientific report submitted to INAF at the end of the COMPASS project, funded through the grant TECNO INAF 201

    ASTRI SST-2M camera electronics

    Get PDF
    ASTRI SST-2M is an Imaging Atmospheric Cherenkov Telescope (IACT) developed by the Italian National Institute of Astrophysics, INAF. It is the prototype of the ASTRI telescopes proposed to be installed at the southern site of the Cherenkov Telescope Array, CTA. The optical system of the ASTRI telescopes is based on a dual mirror configuration, an innovative solution for IACTs, and the focal plane of the camera is composed of silicon photo-multipliers (SiPM), a recently developed technology for light detection, that exhibit very fast response and an excellent single photoelectron resolution. The ASTRI camera electronics is specifically designed to directly interface the SiPM sensors, detecting the fast pulses produced by the Cherenkov flashes, managing the trigger generation, the digital conversion of the signals and the transmission of the data to an external camera server connected through a LAN. In this contribution we present the general architecture of the camera electronics developed for the ASTRI SST-2M prototype, with special emphasis to some innovative solutions

    Procedures for the relative calibration of the SiPM gain on ASTRI SST-2M camera

    Get PDF
    ASTRI SST-2M is one of the prototypes of the small size class of telescopes proposed for the Cherenkov Telescope Array. Its optical design is based on a dual-mirror Schwarzschild-Couder configuration, and the camera is composed by a matrix of monolithic multipixel silicon photomultipliers managed by ad-hoc tailored front-end electronics. This paper describes the procedures for the gain calibration on the ASTRI SST-2M. Since the SiPM gain depends on the operative voltage and the temperature, we adjust the operative voltages for all sensors to have equal gains at a reference temperature. We then correct gain variations caused by temperature changes by adjusting the operating voltage of each sensor. For that purpose the SiPM gain dependence on operating voltage and on temperature have been measured. In addition, we present the calibration procedures and the results of the experimental measurements to evaluate, for each pixel, the parameters necessary to make the trigger uniform over the whole focal plane

    Characterization and performance of the ASIC (CITIROC) front-end of the ASTRI camera

    Get PDF
    The Cherenkov Imaging Telescope Integrated Read Out Chip, CITIROC, is a chip adopted as the front-end of the camera at the focal plane of the imaging Cherenkov ASTRI dual-mirror small size telescope (ASTRI SST-2M) prototype. This paper presents the results of the measurements performed to characterize CITIROC tailored for the ASTRI SST-2M focal plane requirements. In particular, we investigated the trigger linearity and efficiency, as a function of the pulse amplitude. Moreover, we tested its response by performing a set of measurements using a silicon photomultiplier (SiPM) in dark conditions and under light pulse illumination. The CITIROC output signal is found to vary linearly as a function of the input pulse amplitude. Our results show that it is suitable for the ASTRI SST-2M camera. <P /
    corecore