4,156 research outputs found

    Are direct search experiments sensitive to all spin-independent WIMP candidates?

    Full text link
    The common analysis of direct searches for spin-independent Weakly Interacting Massive Particles (WIMPs) assumes that a spin-independent WIMP couples with the same strength with both nucleons, \textit{i.e.} that the spin-independent interaction is also fully isospin-independent. Though in a fully isospin-dependent interaction scenario the spin-independent WIMP-nucleus cross section is strongly quenched, the leading experiments are still sensitive enough to set limits 1-2 orders of magnitude less stringent than those traditionally presented. In the isospin-dependent scenario the difference between the limits of CDMS-II and ZEPLIN-I is significantly reduced. Here, a model-independent framework is discussed and applied to obtain the current general model-independent limits.Comment: 4 pages, 4 figures, revtex4.0, submitted to Phys. Rev. Let

    Rigorous construction of ground state correlations in graphene: renormalization of the velocities and Ward Identities

    Get PDF
    We consider the 2D Hubbard model on the honeycomb lattice, as a model for single layer graphene with screened Coulomb interactions; at half filling and weak coupling, we construct its ground state correlations by a convergent multiscale expansion, rigorously excluding the presence of magnetic or superconducting instabilities or the formation of a mass gap. The Fermi velocity, which can be written in terms of a convergent series expansion, remains close to its non-interacting value and turns out to be isotropic. On the contrary, the interaction produces an asymmetry between the two components of the charge velocity, in contrast with the predictions based on relativistic or continuum approximations.Comment: 4 pages, 1 figure; version published on Phys. Rev. B; erratum adde

    Fermi liquid behavior in the 2D Hubbard model at low temperatures

    Full text link
    We prove that the weak coupling 2D Hubbard model away from half filling is a Landau Fermi liquid up to exponentially small temperatures. In particular we show that the wave function renormalization is an order 1 constant and essentially temperature independent in the considered range of temperatures and that the interacting Fermi surface is a regular convex curve. This result is obtained by deriving a convergent expansion (which is not a power series) for the two point Schwinger function by Renormalization Group methods and proving at each order suitable power counting improvements due to the convexity of the interacting Fermi surface. Convergence follows from determinant bounds for the fermionic expectations.Comment: 66 pages, 10 figure

    Spin polarization and g-factor enhancement in graphene nanoribbons in magnetic field

    Full text link
    We provide a systematic quantitative description of spin polarization in armchair and zigzag graphene nanoribbons in a perpendicular magnetic field. We first address spinless electrons within the Hartree approximation studying the evolution of the magnetoband structure and formation of the compressible strips. We discuss the potential profile and the density distribution near the edges and the difference and similarities between armchair and zigzag edges. Accounting for the Zeeman interaction and describing the spin effects via the Hubbard term we study the spin-resolved subband structure and relate the spin polarization of the system at hand to the formation of the compressible strips for the case of spinless electrons. At high magnetic field the calculated effective g-factor varies around a value of ~2.25 for armchair nanoribbons and ~3 for zigzag nanoribbons. An important finding is that in zigzag nanoribbons the zero-energy mode remains pinned to the Fermi-energy and becomes fully spin-polarized for all magnetic fields, which, in turn, leads to a strong spin polarization of the electron density near the zigzag edge.Comment: 9 pages, 4 figure

    Universal finite size corrections and the central charge in non solvable Ising models

    Full text link
    We investigate a non solvable two-dimensional ferromagnetic Ising model with nearest neighbor plus weak finite range interactions of strength \lambda. We rigorously establish one of the predictions of Conformal Field Theory (CFT), namely the fact that at the critical temperature the finite size corrections to the free energy are universal, in the sense that they are exactly independent of the interaction. The corresponding central charge, defined in terms of the coefficient of the first subleading term to the free energy, as proposed by Affleck and Blote-Cardy-Nightingale, is constant and equal to 1/2 for all 0<\lambda<\lambda_0 and \lambda_0 a small but finite convergence radius. This is one of the very few cases where the predictions of CFT can be rigorously verified starting from a microscopic non solvable statistical model. The proof uses a combination of rigorous renormalization group methods with a novel partition function inequality, valid for ferromagnetic interactions.Comment: 43 pages, 1 figur

    Universal conductivity and dimensional crossover in multi-layer graphene

    Full text link
    We show, by exact Renormalization Group methods, that in multi-layer graphene the dimensional crossover energy scale is decreased by the intra-layer interaction, and that for temperatures and frequencies greater than such scale the conductivity is close to the one of a stack of independent layers up to small corrections

    Heavy Superheated Droplet Detectors as a Probe of Spin-independent WIMP Dark Matter Existence

    Full text link
    At present, application of Superheated Droplet Detectors (SDDs) in WIMP dark matter searches has been limited to the spin-dependent sector, owing to the general use of fluorinated refrigerants which have high spin sensitivity. Given their recent demonstration of a significant constraint capability with relatively small exposures and the relative economy of the technique, we consider the potential impact of heavy versions of such devices on the spin-independent sector. Limits obtainable from a CF3I\mathrm{CF_{3}I}-loaded SDD are estimated on the basis of the radiopurity levels and backgrounds already achieved by the SIMPLE and PICASSO experiments. With 34 kgd exposure, equivalent to the current CDMS, such a device may already probe to below 106^{-6} pb in the spin-independent cross section.Comment: 9 pages, 4 figures, accepted Phys. Rev.

    Response properties of III-V dilute magnetic semiconductors: interplay of disorder, dynamical electron-electron interactions and band-structure effects

    Get PDF
    A theory of the electronic response in spin and charge disordered media is developed with the particular aim to describe III-V dilute magnetic semiconductors like GaMnAs. The theory combines a detailed k.p description of the valence band, in which the itinerant carriers are assumed to reside, with first-principles calculations of disorder contributions using an equation-of-motion approach for the current response function. A fully dynamic treatment of electron-electron interaction is achieved by means of time-dependent density functional theory. It is found that collective excitations within the valence band significantly increase the carrier relaxation rate by providing effective channels for momentum relaxation. This modification of the relaxation rate, however, only has a minor impact on the infrared optical conductivity in GaMnAs, which is mostly determined by the details of the valence band structure and found to be in agreement with experiment.Comment: 15 pages, 9 figure
    corecore