Response properties of III-V dilute magnetic semiconductors: interplay
of disorder, dynamical electron-electron interactions and band-structure
effects
A theory of the electronic response in spin and charge disordered media is
developed with the particular aim to describe III-V dilute magnetic
semiconductors like GaMnAs. The theory combines a detailed k.p description of
the valence band, in which the itinerant carriers are assumed to reside, with
first-principles calculations of disorder contributions using an
equation-of-motion approach for the current response function. A fully dynamic
treatment of electron-electron interaction is achieved by means of
time-dependent density functional theory. It is found that collective
excitations within the valence band significantly increase the carrier
relaxation rate by providing effective channels for momentum relaxation. This
modification of the relaxation rate, however, only has a minor impact on the
infrared optical conductivity in GaMnAs, which is mostly determined by the
details of the valence band structure and found to be in agreement with
experiment.Comment: 15 pages, 9 figure