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We consider the two-dimensional Hubbard model on the honeycomb lattice, as a model for single-layer
graphene with screened Coulomb interactions; at half filling and weak coupling, we construct its ground-state
correlations by a convergent multiscale expansion, rigorously excluding the presence of magnetic or supercon-
ducting instabilities or the formation of a mass gap. The Fermi velocity, which can be written in terms of a
convergent series expansion, remains close to its noninteracting value and turns out to be isotropic; as a
consequence, the Dirac cones are isotropic at low energies. On the contrary, the interaction produces an
asymmetry between the two components of the charge velocity, in contrast to the predictions based on rela-
tivistic or continuum approximations.
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The recent experimental realization of a monatomic gra-
phitic film,1 known as graphene, has elicited an enormous
interest in the study of the properties of two-dimensional
�2D� electron systems on the honeycomb lattice, which is the
typical underlying structure displayed by single-layer
graphene sheets. Graphene is quite different from most con-
ventional quasi-two-dimensional electron gases because of
the peculiar quasiparticle dispersion relation, which closely
resembles the one of massless Dirac fermions in 2+1
dimensions.2 Already in the absence of interactions, the sys-
tem displays highly unusual features, such as the anomalous
dependence of the cyclotron mass on the electronic density,
an anomalous integer-quantum Hall effect, and the insensi-
tivity to localization effects generated by disorder. In real
systems, despite the unavoidable presence of electron-
electron interactions, such consequences of the relativistic-
like dispersion relation have been experimentally verified;3,4

the observation based on angle-resolved photoemission
spectroscopy5,6 is compatible with linear dispersion relation
and isotropic Fermi velocity.

A basic model for investigating the effect of the electron-
electron interactions in graphene is the 2D Hubbard model
on the honeycomb lattice, in the presence either of a short or
of a long-range interaction, corresponding to the cases of
screened or unscreened Coulomb interactions, respectively;
see Refs. 7–16. Usually the analysis of this model is per-
formed by mean-field and renormalization-group �RG� meth-
ods at the lowest perturbative orders,7–16 neglecting the pres-
ence of the lattice and replacing the exact dispersion relation
by its linear approximation around the Dirac points. How-
ever, in such analyses there is no control of the effects pro-
duced by the truncations of the exact RG equations or by the
considered approximations so that nonperturbative effects,
such as a mass generation, have not been excluded so far and
are still subject of an active debate.17–21 Moreover, possible
symmetry-breaking effects due to the presence of the under-
lying lattice have not been considered so far, and it remains
to be seen whether the fact that Lorentz invariance is explic-

itly broken by the lattice can induce anisotropic renormaliza-
tions of the Dirac cones, or of the spin and charge velocities.

It would be desirable to substantiate the predictions of
theoretical analysis by rigorous results and exact solutions
and, in the case of controversial issues, to be able to rigor-
ously exclude one conclusion or the other. Unfortunately,
there are very few rigorous results about the structure of the
ground state of the Hubbard model in two or more dimen-
sions, among which we would like to mention the results in
Ref. 22, guaranteeing the uniqueness of the ground state and
the vanishing of its total spin. However, as far as we know,
so far no results were proved about the existence or nonex-
istence of long-range order and about the long-distance be-
havior of correlation in the Hubbard model on the honey-
comb or other lattices.

Two theorems reporting the first rigorous construction of
the ground-state correlations in the 2D Hubbard model on
the honeycomb lattice at half filling, weak coupling, and
short-range interactions are stated here. Our results exclude
the presence of magnetic or superconducting instabilities and
the formation of a mass gap. The interaction changes by a
finite amount the wave-function renormalization, and the
Fermi velocity. Note that the interacting Fermi velocity re-
mains isotropic, even though the model breaks the invariance
under 90° rotations; the isotropy of the Fermi velocity im-
plies the isotropy of the Dirac cones at low energies.

On the contrary, we predict that the charge velocity devel-
ops an asymmetry between the two components, an effect
that is, in principle, accessible to experiments. Note that the
latter conclusion is in contrast to the naive expectation that
weak short-range interactions, being irrelevant in the RG
sense, do not alter the Dirac spectrum and the spin and
charge velocities. In the case of unscreened Coulomb inter-
actions, we are not yet able to control the convergence of the
renormalized series; however, even in this case, we predict
that the Fermi velocity remains isotropic at all orders, while
the isotropy of the charge velocity is broken already at sec-
ond order, as in the case of short-ranged interactions.
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Our analysis is based on the methods of constructive
renormalization, which have already proven to be quite ef-
fective in analyzing one-dimensional �1D� interacting fermi-
onic systems in their ground state23 and 2D systems up to
exponentially small temperatures or in the presence of a non-
symmetric Fermi surfaces.24–26 While constructive renormal-
ization �see, e.g., Ref. 27 for an introduction� is based on the
RG ideas, the way in which it implements these ideas is
slightly different with respect to other more standard
schemes, the main advantages being that the resulting
method is �i� exact, in the sense that it does not need any
relativistic approximation or continuum limit and it allows us
to keep the full lattice structure of the problem; �ii� nonper-
turbative, in the sense that it involves expansions whose con-
vergence can be mathematically proved.

The Hamiltonian of the 2D Hubbard model on the honey-
comb lattice at half filling in second-quantized form is given
by
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where � is a periodic triangular lattice with basis a�1,2

= 1
2 ���3,3� and the nearest-neighbor vectors �� i are defined

as ��1= �0,1� and ��2,3= 1
2 ���3,−1�. The creation and annihi-

lation fermionic operators with spin index �= ↑↓,
ax�,�

� , b
x�+�� i,�

�
, satisfy periodic boundary conditions in x�. The

choice of the interaction is done only for definiteness �it is
the simplest one for which the anisotropy of the charge ve-
locity is visible at first order in renormalized perturbation
theory� but our results are valid for a generic short-range
density-density interaction.

We introduce the two-component fermionic operators
�x�,�

� = �ax�,�
� ,b

x�+��1,�

� � and �x,�
� =eH�x0�x�,�

� e−H�x0 with x= �x0 ,x��.
If �·�=lim�,	�	→	 Tr
e−�H�T
·�� /Tr
e−�H��, with T as the fer-
mionic time-ordering operator, the zero-temperature 2n-point
Schwinger functions are defined as ��i=1

n �xi,�i

− �yi,�i�
+ �. In the

noninteracting U=0 case, the Fourier transform of the two-
point Schwinger function is given by
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3 eik���� i−��1�.

Ŝ0�k� is singular at the Fermi points pF
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= �� 2�

3�3
, 2�

3 �. Close to p�F
�, v�k��+ p�F

����3 /2���k1�+ ik2��, so
that the free Schwinger function is asymptotically the same
as that of the massless Dirac fermions in 2+1 dimensions.

The density operator is defined as �̂p

= ��	�	�−1 �k,��̂k,�
+ �̂k−p,�

− and the definition of the current,
for U=0, is obtained from the equation d�x /dx0= �H� ,�x�; in
fact, the latter, for small p, assumes the form of a continuity

equation provided that the current is chosen as ĵp,i

= ��	�	�−1�k,��̂k,�
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− , where i=1,2, with �1 and �2 as
the first two Pauli matrices. The continuity equation implies
the validity of an asymptotic Ward identity; defining
k�=k−pF

�, if k�, p, and k�−p are small and of the same
order of magnitude,28
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When the interaction is present, the Schwinger functions
are not exactly computable anymore; however, quite remark-
ably, they can be computed in terms of a convergent renor-
malized perturbative series, and their long-distance
asymptotic properties can be rigorously derived, as summa-
rized by the following theorem.

THEOREM 1. There exists a constant U00 such that if
	U	�U0, the specific ground-state energy and the zero-
temperature Schwinger functions of model (1) are analytic
functions of U. The Fourier transform of the two-point
Schwinger function S�k� is singular only at k=pF

� and, close
to the singularity, it can be written as28

S�k� �
1

Z
� − ik0 vF�
k1� + ik2��

vF�
k1� − ik2�� − ik0
�−1

, �4�

where Z=Z�U� and vF=vF�U� are analytic functions of U,
such that Z=1+O�U2� and vF=3 /2+bU+O�U2�, with

b = �
B1

dk�

2	B1	
v�k��

	v�k��	
�p1

v�p� − k��	p�=p�F
+ = 0.511 . . . , �5�

and B1 as the first Brillouin zone.
The result summarized in theorem 1 says that the interac-

tion does not qualitatively change the asymptotic behavior of
the two-point Schwinger function close to the Fermi points;
the effect of the interaction is essentially to change, by a
finite amount, the wave-function renormalization and the
Fermi velocity. This implies that the interacting correlations
decay as fast as in the noninteracting case, and therefore, the
presence of quantum instabilities in the ground state, such as
Néel or superconducting long-range order, is rigorously ex-
cluded at half filling and weak coupling, together with the
possibility of a mass generation.

Note also that in the presence of the interaction, the Fermi
velocity remains the same in the two coordinate directions
even though the model does not display 90° discrete rota-
tional symmetry but rather a 120° rotational symmetry; such
a remarkable property can be easily checked at first order
�replacing �p1

by −i�p2
in Eq. �5�, the same result is found�;

for a proof at all orders in the convergent expansion for vF,
see below. The isotropy of the Fermi velocity implies the
isotropy of the Dirac cones at low energies.

THEOREM 2. For 	U	�U0, if k�, p, and k�−p are small
and of the same order of magnitude,28 then

��ip0�̂p � v1p1ĵp,1 + v2p2ĵp,2�;�̂k,�
− �̂k−p,�

+ �

� ���̂k,�
− �k,�

+ � − ��̂k−p,�
− �̂k−p,�

+ �� , �6�

where the charge velocity v1,2=3 /2+O�U� is analytic in U
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and v1−v2=aU+O�U2�, with

a =
3

4
�
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dk�
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v2�k��

	v�k��	3
v��k� − p�F

+� = − 0.031 65. . . �7�

Theorem 2 says that in the presence of interactions, a new
Ward identity, different from the noninteracting one, is veri-
fied, the main difference with respect to Eq. �3� being that
the charge velocity �v1 ,v2� is interaction dependent and dif-
ferent from the Fermi velocity. Remarkably, its two compo-
nents are different; this anisotropy is related to the presence
of the lattice, that is, to the irrelevant terms in a RG sense,
which are not neglected in our exact scheme. In fact, if we
replace v�k��+ p�F

�� by its asymptotic expression �3 /2���k1�
+ ik2��, the anisotropy coefficient defined by Eq. �7� vanishes
exactly �and so do the higher-order corrections�. We remark
that while theorems 1 and 2 refer to the case of short-range
interactions, the conclusions concerning the symmetry of the
Fermi and charge velocities remain true, as statements at all
orders, even for the case of unscreened Coulomb interac-
tions.

We now sketch the proof of the two theorems above �for
a detailed proof we refer to Ref. 29�. The starting point is the
well-known representation of the ground-state energy in
terms of a Grassmann functional integral e0
=lim�,	�	→	��	�	�−1 logP�d��exp
V����, where P�d�� is

the Grassmann Gaussian integration with propagator Ŝ0�k�,
see Eq. �2�, and V��� is the quartic interaction Eq. �1�. One
can compute e0 by expanding the exponential exp
V���� in
Taylor series in U and naively integrating term by term the
Grassmann monomials, using the Wick rule; however, by
such procedure, it is very difficult to take into account the
cancellations present in the perturbative series. The bounds
obtained by this “simple” procedure are nonuniform in �,
and they do not allow one to take the thermodynamic and
zero-temperature limits. Therefore, we set up an iterative
procedure for the computation of e0, based on �Wilsonian�
RG and involving nontrivial resummations of the perturba-
tive series.

The first step is to decompose the propagator Ŝ0�k� as a
sum of propagators supported close to the two Fermi points
and more and more singular in the infrared region, labeled by
a quasiparticle index �=� �labeling the Fermi points� and

by an integer h�0 so that Ŝ0�k�=�h�1
�=�ĝ�

�h��k−pF
��, with ĝ�

�h�

supported on quasimomenta of scale 2h and, on the support,
of size �ĝ�

�h���2−h. At this point, we compute e0 by itera-
tively integrating the propagators ĝ�0� , ĝ�−1� , . . .. After each
integration step we rewrite

e0 = Fh + lim
�,	�	→	

1

�	�	
log� �

�=�

P�d��
��h��eV�h�����h��, �8�

where P�d��
��h�� is the Grassmannian quadratic integration

with propagator given by

g�
��h��k�� �

�h�k��
Zh

� − ik0 ch�
k1� + ik2��
ch�
k1� − ik2�� − ik0

�−1

,

�9�

where �h
−1�k�� is a smooth compact support function nonva-

nishing only for 	k�	�2h; V�h� is the effective potential, a
sum of monomials of arbitrary order, with kernels that are
analytic functions of U; analyticity it is a very nontrivial
property obtained by exploiting anticommutativity properties
of Grassmann variables via Gram inequality for determi-
nants. The scaling dimensions of the kernels with ne external
lines are equal to 3−ne, modulo an additional dimensional
gain, following from the fact that all kernels with �4 exter-
nal lines are irrelevant in a RG sense �see Ref. 29, theorem

2�. The kernels Ŵ2
�h��k�� with ne=2, which are linearly rel-

evant, can be inserted step by step in the Gaussian integra-
tion, thanks to the fact that they have the same reality and
symmetry properties as the free quadratic action; in particu-

lar, it is found that Ŵ2
�h��0�=0 and

k��k�Ŵ2
�h��0� = � − izhk0 �h�
k1� + ik2��

�h�
k1� − ik2�� − izhk0
� �10�

for suitable real constants zh and �h. Note that 
k1� and ik2�
are multiplied by the same constant �h, which is quite re-
markable; see Ref. 29, lemma 2 for a proof. Iterating the
procedure above, we find recursive equations for Zh and ch;
in the h→−	 limit, the two running coupling constants con-
verge to values Z−	=Z=Z�U� and c−	=vF=vF�U�, which are
close to their unperturbed values and are analytic in U
�again, thanks to the fact that all subdiagrams with ne�4 are
irrelevant in a RG sense�. This completes the discussion con-
cerning the analyticity of e0. A similar discussion allows us
to prove the analyticity of the Schwinger functions and Eq.
�4�, see Ref. 29, Sec. IIID.

Let us now discuss a sketch of the proof of theorem 2. We
perform a multiscale analysis similar to the one sketched
above, with V��� replaced by V���−B�� ,J�, with
B�� ,J�= ��+ ,�−�+ ��+ ,�−�+��=0

2 �J� , j��, �x,�
� as two exter-

nal Grassmann fields, Jx,� as an external commuting field,
and jx,� as the current �here jx,0=�x, with � as the density,
see the lines preceding Eq. �3��.

The iterative integration procedure described above, in
this case, produces, besides the effective potential V�h�, new
terms involving the external fields. In particular, at scale h,
the effective source term is given by ��,��Z�,��

�h� �J� , j��
��h��,

with Z�,��=��,��Z�, by the discrete invariance symmetries of
the model, see Ref. 29, lemma 1. A crucial remark is that
while in a relativistic quantum field theory �QFT� Z�

�h� is �
independent, here it is not, because the relativistic symmetry
is broken by the presence of the underlying lattice �i.e., by
the irrelevant terms in the fermionic action�. We find that in
the limit h→−	, Z�

�h�→Z�=Z��U�, which are analytic func-
tions of U, with Z0=Z=1+O�U2� and Z2−Z1= �2a /3�U
+O�U2�, where a is given in Eq. �7�. See Fig. 1.

Using the fact that all kernels with four or more external
lines are irrelevant, we find that, for small
k�, k�−p, and p,

�ĵp,�;�̂k−p,�
− �k,�

+ � � Z�S�k���S�k − p�, � = 0,1,2,

�11�

with �0=1 and S�k� as the interacting two-point Schwinger
function in Eq. �4�. The combination S�k���S�k+p� is as-
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ymptotically the same as the vertex of a relativistic QFT with
wave-function renormalization Z and “speed of light” equal
to vF; therefore, it satisfies a relativistic Ward identity �WI�,
relating it to the derivative of S�k�,

S�k��ip0 + vF��p1�1 + p2�2��S�k − p�

�
1

Z
�S�k� − S�k − p�� . �12�

Combining Eqs. �11� and �12�, and recalling that, by symme-
try, Z=Z0, we get Eq. �6� with v1,2=vFZ0 /Z1,2.

In conclusion, we analyzed the properties of a single-layer
graphene at half filling, described by a Hubbard model on the
honeycomb lattice, going beyond the approaches based on
finite-order truncations and relativistic approximations �pre-
vious analyses taking into account lattice effects were fo-
cused on doped rather than on half-filled graphene, see, e.g.,

Refs. 11 and 30–32�. In the case of short-range interactions,
we proved the analyticity of the theory at weak coupling; this
gives a rigorous confirmation to the belief �see, e.g., Ref. 19�
that nonperturbative effects such as quantum instabilities or
the opening of a mass gap can be possibly present only at
large values of the coupling. We proved that the Fermi ve-
locity and the Dirac cones at low energies are isotropic, in
agreement with observations based on angle-resolved photo-
emission spectroscopy;5,6 previous analyses based on relativ-
istic approximations were inconclusive in this respect since
the �previously neglected� symmetry-breaking terms due to
the lattice produce a renormalization of the Fermi velocity,
which could in principle be anisotropic. This is by no means
just an academic possibility; indeed, while this anisotropy
effect is not visible in the Fermi velocity, we show that it is
observable in other quantities, such as the charge velocity
appearing in the Ward identities, which turns out to be asym-
metric in the two coordinate directions. This asymmetry was
previously unnoticed and it may be detected in future experi-
ments. Finally, we stress that the assumption of local or
short-range interaction plays a crucial role in our analysis;
the unscreened Coulomb interactions is marginal instead of
irrelevant in the RG sense, and its effect on the physical
properties can be in principle much more relevant. The un-
screened Coulomb interactions have been studied up to now
mainly in the relativistic approximation and at lowest pertur-
bative orders, starting from Refs. 9 and 10, and we believe
that going beyond such approximations will give a definite
answer to the question of the role of the interactions in the
properties of real graphene.
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