107 research outputs found

    Halide perovskites: Current issues and new strategies to push material and device stability

    Get PDF
    Abstract This short review aims at summarizing the current challenges related to poor Perovskite Solar Cells (PSCs) stability which nowadays puts severe constrains on near future device commercialization. As a game changer in the field of photovoltaics (PVs), PSCs are highly efficient and cheap to fabricate. However, they suffer from poor long-term stability upon exposure to heat, moisture, oxygen and light, and combinations thereof. Poor device stability originates from intrinsic instability issues of the perovskite active layer itself, as well as extrinsic factors due to partial degradation of the layers composing the device stack. Here we briefly review the chemical and physical processes responsible for intrinsic material instability, and we highlight possible solutions to overcome it; we then consider the whole device, discussing properties and interactions of the stacked layers. Finally, particular emphasis is placed on the need of shared standards for stability tests, which should include detailed report on experimental conditions over a statistically significant number of samples, allowing for a direct comparison of results across different groups and fostering a rapid advance of our understanding of degradation mechanisms and of the solutions to overcome them

    All-Inorganic Cesium-Based Hybrid Perovskites for Efficient and Stable Solar Cells and Modules

    Get PDF
    AbstractIn the last ten years, organic–inorganic hybrid perovskites have been skyrocketing the field of innovative photovoltaics (PVs) and now represent one of the most promising solution for next‐generation PVs. Within the family of halide perovskites, increasing attention has been focused on the so‐called all‐inorganic group, where the organic cation is replaced by cesium, as in the case of CsPbI3. This subclass of halide perovskites features desirable optoelectronic properties such as easily tunable bandgap, strong defect tolerance, and improved thermal stability compared to the hybrid systems. When integrated in PV cells, they exhibit high power conversion efficiency (PCE) with record values of 19.03%. However, all‐inorganic perovskite solar cells (PCSs) face several challenges such as i) instability of the CsPbI3 photoactive phase in ambient conditions, ii) inhomogeneous film morphology, and iii) high surface defect density. This work focuses on the mentioned challenges with a special attention on discussing the Cs–Pb–X system (X = I, Br). Then, the most recent and effective approaches for increasing both the PCE and the stability of devices are reviewed, which include material doping, interface engineering, and device optimization. Finally, the first efforts toward the upscaling of Cs‐based PSCs, and predicted methods for enabling large‐scale production, are discussed

    High-Efficiency Perovskite Solar Cells using Molecularly-Engineered, Thiophene-Rich,Hole-Transporting Materials: Influence of Alkyl Chain Length on Power Conversion Efficiency

    Get PDF
    The synthesis and characterization of a series of novel small-molecule hole-transporting materials (HTMs) based on an anthra[1,2-b:4,3-bâ€Č:5,6-bâ€Čâ€Č:8,7-bâ€Čâ€Čâ€Č]tetrathiophene (ATT) core are reported. The new compounds follow an easy synthetic route and have no need of expensive purification steps. The novel HTMs were tested in perovskite solar cells (PSCs) and power conversion efficiencies (PCE) of up to 18.1 % under 1 sun irradiation were 2 measured. This value is comparable with the 17.8 % efficiency obtained using spiroOMeTAD as a reference compound. Similarly, a significant quenching of the Photoluminescence in the first nanosecond is observed, indicative of effective hole transfer.Additionally, the influence of introducing aliphatic alkyl chains acting as solubilizers on the device performance of the ATT molecules is investigated. Replacing the methoxy groups on the triarylamine sites by butoxy-, hexoxy- or decoxy-substituents greatly improved the solubility of the compounds without changing the energy levels, yet at the same time significantly decreasing the conductivity as well as the PCE, 17.3 % for ATT-OBu, 15.7 % for ATT-OHex and 9.7 % for ATT-ODec

    Selective Growth of Layered Perovskites for Stable and Efficient Photovoltaics

    Get PDF
    Perovskite solar cells (PSCs) are promising alternatives toward clean energy because of their high-power conversion efficiency (PCE) and low materials and processing cost. However, their poor stability under operation still limits their practical applications. Here we design an innovative approach to control the surface growth of a low dimensional perovskite layer on top of a bulk three-dimensional (3D) perovskite film. This results in a structured perovskite interface where a distinct layered low dimensional perovskite is engineered on top of the 3D film. Structural and optical properties of the stack are investigated and solar cells are realized. When embodying the low dimensional perovskite layer, the photovoltaic cells exhibit an enhanced PCE of 20.1% on average, when compared to pristine 3D perovskite. In addition, superior stability is observed: the devices retain 85% of the initial PCE stressed under one sun illumination for 800 hours at 50 1 C in an ambient environment

    Role of microstructure in the electron–hole interaction of hybrid lead halide perovskites

    Get PDF
    Organic–inorganic metal halide perovskites have demonstrated high power conversion efficiencies in solar cells and promising performance in a wide range of optoelectronic devices. The existence and stability of bound electron–hole pairs in these materials and their role in the operation of devices with different architectures remains a controversial issue. Here we demonstrate, through a combination of optical spectroscopy and multiscale modelling as a function of the degree of polycrystallinity and temperature, that the electron–hole interaction is sensitive to the microstructure of the material. The long-range order is disrupted by polycrystalline disorder and the variations in electrostatic potential found for smaller crystals suppress exciton formation, while larger crystals of the same composition demonstrate an unambiguous excitonic state. We conclude that fabrication procedures and morphology strongly influence perovskite behaviour, with both free carrier and excitonic regimes possible, with strong implications for optoelectronic devices

    Optimization of the wetting-drying characteristics of hydrophobic metal organic frameworks via crystallite size: The role of hydrogen bonding between intruded and bulk liquid

    Get PDF
    Hypothesis: The behavior of Heterogeneous Lyophobic Systems (HLSs) comprised of a lyophobic porous material and a corresponding non-wetting liquid is affected by a variety of different structural parameters of the porous material. Dependence on exogenic properties such as crystallite size is desirable for system tuning as they are much more facilely modified. We explore the dependence of intrusion pressure and intruded volume on crystallite size, testing the hypothesis that the connection between internal cavities and bulk water facilitates intrusion via hydrogen bonding, a phenomenon that is magnified in smaller crystallites with a larger surface/volume ratio. Experiments: Water intrusion/extrusion pressures and intrusion volume were experimentally measured for ZIF-8 samples of various crystallite sizes and compared to previously reported values. Alongside the practical research, molecular dynamics simulations and stochastic modeling were performed to illustrate the effect of crystallite size on the properties of the HLSs and uncover the important role of hydrogen bonding within this phenomenon. Findings: A reduction in crystallite size led to a significant decrease of intrusion and extrusion pressures below 100 nm. Simulations indicate that this behavior is due to a greater number of cages being in proximity to bulk water for smaller crystallites, allowing cross-cage hydrogen bonds to stabilize the intruded state and lower the threshold pressure of intrusion and extrusion. This is accompanied by a reduction in the overall intruded volume. Simulations demonstrate that this phenomenon is linked to ZIF-8 surface half-cages exposed to water being occupied by water due to non-trivial termination of the crystallites, even at atmospheric pressure

    Role of microstructure in the electron–hole interaction of hybrid lead halide perovskites

    Get PDF
    Solar cells based on hybrid inorganic-organic halide perovskites have demonstrated high power conversion efficiencies in a range of architectures. The existence and stability of bound electron-hole pairs in these materials, and their role in the exceptional performance of optoelectronic devices, remains a controversial issue. Here we demonstrate, through a combination of optical spectroscopy and multiscale modeling as a function of the degree of polycrystallinity and temperature, that the electron-hole interaction is sensitive to the microstructure of the material. The long-range order is disrupted by polycrystalline disorder and the variations in electrostatic potential found for smaller crystals suppress exciton formation, while larger crystals of the same composition demonstrate an unambiguous excitonic state. We conclude that fabrication procedures and morphology strongly influence perovskite behaviour, with both free carrier and excitonic regimes possible, with strong implications for optoelectronic devices

    Fashioning Fluorous Organic Spacers for Tunable and Stable Layered Hybrid Perovskites

    Get PDF
    Two dimensional (2D) organic-inorganic hybrid perovskites have recently attracted enormous attention due to their higher environmental stability with respect to three-dimensional (3D) perovskites and larger structural tunability. The layered structure relaxes constraints on the dimensions of the organic cations that alternate the inorganic sheets, opening up a large choice on the organics, ultimately enabling the creation of tunable layered perovskites. Here, we report on a series of fluorous cations, varying in size and shape, as building blocks for a new family of fluorous 2D lead-iodide perovskites. These display a large tunability in the optical and dielectric properties depending on the structure of the fluorous cations. Importantly, despite the invariant inorganic framework, the 2D perovskite electronic structure is strongly affected by the cation size. The longer the cation, the smaller the 2D perovskite band gap and the exciton binding energy (reducing from 400 meV down to 130 meV). Such variation is induced by the strain in the inorganic sheet, resulting in a more dispersed valence and conduction bands, in turn yielding a smaller band gap. In addition, a smaller effective mass for the 2D perovskite with the longest cation is calculated, for which improved transport properties are anticipated. Importantly, the fluorous moiety confers extreme stability to the 2D perovskite and enhances the hydrophobic character of the perovskite surface, which remains perfectly stable for more than one month in ambient conditions
    • 

    corecore