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Solar cells based on hybrid inorganic-organic halide perovskites have 16 

demonstrated high power conversion efficiencies in a range of architectures.  The 17 

existence and stability of bound electron-hole pairs in these materials, and their 18 

role in the exceptional performance of optoelectronic devices, remains a 19 

controversial issue. Here we demonstrate, through a combination of optical 20 



spectroscopy and multiscale modeling as a function of the degree of 21 

polycrystallinity and temperature, that the electron-hole interaction is sensitive to 22 

the microstructure of the material. The long-range order is disrupted by 23 

polycrystalline disorder and the variations in electrostatic potential found for 24 

smaller crystals suppress exciton formation, while larger crystals of the same 25 

composition demonstrate an unambiguous excitonic state. We conclude that 26 

fabrication procedures and morphology strongly influence perovskite behaviour, 27 

with both free carrier and excitonic regimes possible, with strong implications for 28 

optoelectronic devices. 29 

 30 

Hybrid perovskites represent a new, disruptive technology in the field of optoelectronics. 31 

They have the potential to overcome the performance limits of current technologies and 32 

achieving low cost and high integrability. Hybrid halide perovskite, e.g. CH3NH3PbX3 [X 33 

= Cl, Br, or I], solar cells with power conversion efficiency exceeding 20% 1, 2 are 34 

effectively challenging existing thin-film technologies. In addition, the incorporation of 35 

hybrid perovskites in optical cavities as lasing materials 3,4,5 and in diode structures as 36 

efficient light emitters6 demonstrates their flexibility and potential for technologically 37 

relevant applications beyond photovoltaics. 38 

Hybrid perovskites are usually deposited as polycrystalline thin-films with variable 39 

mesoscale morphology depending on the growth conditions and the obtained grain size 40 

ranges from tens to thousands of nm 7–9. Over the last two years the impressive 41 

improvement of photovoltaic performance has been driven by empirical evolution of the 42 



device architecture and processing methodologies. However, there is a considerable 43 

lack of understanding of material properties, both as pristine films and their embodiment 44 

in a device. Early studies classified the working mechanism of perovskite based-solar 45 

cells within a pure excitonic paradigm, 10 with bound electron and hole pairs being the 46 

primary photoexcitation. More recent investigations have put forward a different 47 

scenario, where photoexcitation leads mainly to the generation of free electrons and 48 

holes, similar to the case of conventional polycrystalline inorganic semiconductors4,11–16. 49 

Recently, there have been several reports on the optical properties of hybrid perovskite 50 

single crystals17–19, which should represent a reliable reference state. However, even in 51 

this case, a few discrepancies are evident, for example, Shi et al.17 report an optical 52 

absorption spectrum with onset at 1.63eV, showing no sign of excitonic states17, while J. 53 

Huang et al.18 show evidence of a strong excitonic peak at the onset of the external 54 

quantum efficiency spectrum, at 1.51 eV18. 55 

In this report we describe the interplay between free carriers and excitons, based on 56 

transient absorption (TA) spectroscopy and multi-scale numerical simulations. 57 

CH3NH3PbI3 (MAPbI3) crystallized in a mesoporous scaffold, with small grain size (tens 58 

of nm), does not support exciton states even at low temperature. In contrast, in 59 

hundreds of nm-large domains, as formed by the deposition on flat substrate, free 60 

carriers may thermalize and coalesce into the exciton state – depending on temperature 61 

and excitation density. Similar behavior is also observed for the higher band gap 62 

CH3NH3PbBr3 (MAPbBr3). Thus, a definitive classification – “excitonic” or “free carrier” 63 

semiconductor – as well as a universal value for the exciton binding energy in 64 

semiconductors presenting the same chemical composition, is not possible for hybrid 65 



perovskites as both regimes are physically accessible by appropriately processing the 66 

compounds. We rationalize this by introducing a model for dielectric screening in 67 

perovskites. Such a screening is due to polarization of the medium, and can originate 68 

from electronic as well as lattice displacements. Here we find it is strongly dependent on 69 

the coherent long-range order in the lattice which can be disrupted by imperfections, 70 

such as domain walls within crystals or surface defects. As the permanent dipoles 71 

associated with the methylammonium cation are free to move within the inorganic cage 72 

of the hybrid perovskites, they contribute to lattice polarization, screening the electron-73 

hole Coulomb interaction.  74 

We first consider a MAPbI3 film fabricated by the two-step deposition method on 3 µm 75 

thick alumina mesoporous scaffold, as one of the most established architecture for 76 

efficient perovskite solar cells20 (see Experimental methods for the details on sample 77 

preparation). This sample provides simultaneous access to two distinct structural 78 

morphologies: the crystalline phase grown within the scaffold (meso phase in the 79 

following), which, on average, limits the crystal size to the nanometer scale7,9 and the 80 

thick capping layer on top of the scaffold, consisting of crystals up to hundreds of nm in 81 

size (see Figures 1a and b, respectively and XRD analysis in Figure S1 in SI). The 82 

temperature dependent optical absorption spectrum of such a sample is reported in 83 

Figure S2 of the Supplementary Information (SI) and does not show any excitonic 84 

transition at its onset, similar to what we have previously reported12.  85 

In agreement with previous works4,11,21 the TA spectral evolution of the meso phase 86 

upon photoexcitation above the band-edge can be accounted for by considering the 87 

photo-induced charge-carrier dynamics, without invoking any excitonic contributions. 88 



Note that the sample was photo-excited from the substrate side in order to selectively 89 

interrogate the perovskite phase grown in the scaffold. At room temperature (RT), the 90 

bleaching signal around 1.67 eV shows a rise with time constant of 260 fs due to the 91 

hot-carrier thermalization to the band edge and a broad photo-induced absorption (PA1) 92 

band that forms for energies higher than 1.77 eV. Briefly, the PB band is assigned to the 93 

band filling of the free carriers, while the PA1 has been tentatively assigned in literature 94 

to the change in the refractive index induced by the free carrier population4,11,21 (see 95 

Figures S3 and S4 and the detailed discussion in the SI). In Figure 1c, by reducing the 96 

temperature, still above the tetragonal-to-orthorhombic phase transition, we observe 97 

that the PB band red-shifts, gets narrower and gains intensity. The change in the line 98 

shape is consistent with the lower thermal energy that reduces the homogeneous 99 

broadening.  The red shift can be simply related to the Varshni effect 22(see discussion 100 

in Figure S5 in the SI). It is worth underlining here that this sample does not show any 101 

excitonic peak in the absorption spectrum even at 4K (see Figure S2b). 102 

In Figure 1d we show the temperature dependent TA spectra of the same sample 103 

illuminated from the capping side. Since pump photon penetration depth is comparable 104 

to the thickness of the capping layer, we mainly excite the large crystals in the capping 105 

phase, 40 though some contribution from the smaller crystals within the scaffold can be 106 

present (see Figure 1b).  At RT we note that the PB band is broader and red-shifted 107 

with respect to the PB of the meso phase of the film. The red shift is due to the 108 

reduction of the band gap in the large crystals,13 while the broadening can be related to 109 

contributions from the meso phase underneath. The most striking difference appears 110 

when the sample is cooled down. In particular, at 170K the PB band is strongly red-111 



shifted. Such a large red-shift does not follow the standard Varshni trend. Furthermore, 112 

the PA1 band is simultaneously quenched and a new negative band appears, peaking 113 

around 1.67eV. Note that this is not simply related to the low-temperature structural 114 

phase transition that occurs below 170K 12,23 , which would lead to a blue shift of the 115 

whole spectrum as a consequence of a widening of the semiconductor band-gap (see 116 

Figures S6 and S7 and the discussion in SI). The time evolution of the TA spectra at 117 

170K is shown in Figure 1e. At 200 fs a positive band peaking close to 1.63 eV is 118 

present. In about 1ps (τ∼ 260 fs) a negative band peaking at 1.67eV forms along with 119 

the red shift of the PB, that falls outside our experimental range. Such a behavior has 120 

been well documented in semiconductors as a result of self-normalization of the exciton 121 

energy– i.e. blue shift of the exciton absorption – due to exciton-exciton and exciton-122 

carrier interaction24–28. Thus, the negative band is the result of a modulation (in the 123 

following we indicate it as MA*) and can be considered as a fingerprint for exciton 124 

population24,26.  As previously asserted, large crystals show a clear excitonic transition 125 

at the absorption edge that gains strength upon cooling 7,12,29. Even considering the 126 

lowest exciton binding energy reported so far in literature (i.e. 5meV14,16, 30), one can 127 

expect a decent exciton population at 170K,  at the photoexcitation densities used (a 128 

simple guideline to estimate exciton population fraction depending on the exciton 129 

binding energy value, temperature and excitation density is presented in Figure S8 ). 130 

Accordingly, at 170K the formation of MA* is indicative of exciton formation upon carrier 131 

thermalization. We estimate that the carrier coalescence into the bound excitonic state 132 

occurs within 1 ps (see dynamics in Figure 1f), consistent with the similar phonon 133 



assisted phenomenon that occur in the band relaxation.  Note that in 2D hybrid 134 

perovskites the formation of MA* has also been reported, although slower24,28. 135 

In this specific morphology, the exciton population appears only upon temperature 136 

reduction, implying that the exciton binding energy is insufficient to stabilize the exciton 137 

population at RT. To broaden the perspective of  our observation we fabricated 138 

“cuboids-like” films of MAPbI3
20, with controlled crystal dimension of either < 200 nm or 139 

~ 1 μm from visual inspection of SEM images in Figure 2a and 2b respectively ( see 140 

Figure S1 in SI for the XRD analysis). The UV-vis absorption spectra at RT are shown 141 

in Figure S9 in the Supplementary Information. The TA spectrum of the film with < 200 142 

nm crystal size (indicated in the legend of Figure 2c as “small crystals”) closely 143 

resembles the one obtained in the “meso phase” of the MAPbI3 film at RT, showing that 144 

the thermalized carriers stay free at the band edge - see TA spectra at 1ps, after carrier 145 

thermalization, in Figure 2c and the entire spectral dynamics in Figure S10. No exciton 146 

feature is present. On the contrary, the sample made of ~1 μm large crystals exhibits, at 147 

RT, different spectral features and dynamics.  The TA spectrum forming in 1ps upon 148 

photoexcitation above band-gap resembles the one of the capping layer at 170K (Figure 149 

2c). In particular we highlight the presence of the MA* band even at RT, with a 150 

formation time of about 270 fs (see inset in Figure 2d). Note that this sample keeps the 151 

same TA spectral features even at 77K, where a clear stable excitonic state is also 152 

present at the band edge (see UV-Vis spectra in Figure S6 in the SI), albeit shifted to 153 

higher energies (about 95 meV, see TA spectrum in Figure S7 in the SI) as 154 

consequence of a phase transition. In Figure 2c the red-shifted TA spectrum taken at 155 

77K is reported (dashed line) for easier comparison. This provides additional support to 156 



our assignment of the TA spectra, and the correct prediction of a bleaching band just 157 

outside the experimental range. In Figure 2d we show the details of the spectral 158 

evolution of the sample with large crystals. Importantly, at longer time delays (>10 ps) 159 

the MA* band reduces and the PB shifts to higher energies, towards the free carrier 160 

bleach. This dynamic reflects the decay of the excitonic population that appears to be 161 

shorter lived with respect to the free carrier population, as further confirmed by the TA 162 

spectra in the ns time regime (see Figure S11 in the SI).  163 

We have shown so far that different morphologies of MAPbI3 thin films – with average 164 

crystal size varying from tens to hundreds of nm  may  i) support only the free carrier 165 

population, even at low temperature; ii) support an  excitonic population upon 166 

temperature reduction; iii) sustain the formation of a fraction of short living excitons at 167 

room temperature.  Since the photo-excitation density used in the above three cases is 168 

the same, this clearly indicates that the electron-hole interaction is modified by the 169 

degree of polycrystallinity in the film (please refer to Figure S8 for a simple visualization 170 

of the variation of exciton population fraction as a function of exciton binding energy at a 171 

given photoexcitation density). Thus, the exciton binding energy is not uniquely 172 

determined by the chemical composition of the polycrystalline material but it can be 173 

tuned in a range between a few to tens of meV14–16.    174 

To further generalize our observations we also consider thin films of MAPbBr3. The 175 

halogen substitution induces a lowering of the valence band of the semiconductor and a 176 

blue shift of the optical gap, making the material appealing for a variety of applications 177 

such as high Voc solar cells31,32, water splitting and light emitting devices3,6.  Seminal 178 

studies have suggested larger exciton binding energy for MAPbBr3 with respect to 179 



MAPbI3 
33. However, the optical spectra reported by some of the recent works32,34,35 do 180 

not show any strong excitonic feature at RT. To verify the role of morphology also in this 181 

system we prepared MAPbBr3 thin films with average crystal dimensions much smaller 182 

than  100 nm by growing them in an Al2O3 mesoporous scaffold and ~1 μm (see SEM 183 

images in Figure S12 of SI). Figure 3a and Figure 3b show the UV-vis spectra of such 184 

samples while Figure 3c and Figure 3d show the photo-induced TA spectra when 185 

exciting above band-gap at RT. Small crystals do not show any excitonic feature at the 186 

on-set of the UV-vis absorption spectrum, at RT. In perfect agreement, the TA spectrum 187 

resembles very much, in shape and dynamics, that from meso MAPbI3, pointing to a 188 

free carrier picture (refer to Figures S3 and S4 and the discussion in the SI). In contrast, 189 

large crystals show a sharp excitonic feature at the onset of the absorption spectrum 190 

(Figure 3b). In agreement, the TA spectra (Figure 3d) of the large MAPbBr3 crystals 191 

show the formation of a PB band at 2.34 eV that matches with the excitonic transition, 192 

together with the appearance of the modulation feature, MA*, at 2.43 eV in the first ps (a 193 

comparison of the 1ps spectra from the small and the large crystal is reported in the 194 

inset of Figure 3d). This behavior indicates the formation of an exciton population upon 195 

carrier thermalization which eventually recombines in hundreds of ps. The latter is 196 

clearly demonstrated by the fact that beyond 1ps the spectra lose their intensity but do 197 

not change their spectral shape (see also dynamics in Figure S13 of the SI).   198 

These results show that also for MAPbBr3 it is not possible to asses a unique value for 199 

the exciton binding energy, which will depend on the thin film morphology. Thus, 200 

optoelectronic devices made of large MAPbBr3 crystals, with a stable excitonic 201 



population at RT, will work in a different manner with respect to those made of thin films 202 

with a higher degree of polycrystallinity. 203 

The effect of the degree of polycrystallinity on the exciton binding energy can be 204 

rationalized by considering the role of disorder in such hybrid systems, with particular 205 

emphasis on the orientational order of the organic cation within the material. Large 206 

perovskite crystals (~1 µm in size) show a cooperative ordered phase of the organic 207 

cations which affects their rotational degrees of freedom9,36. This is not intrinsically 208 

related to the size of the crystal, but to the “quality” of the crystallization process. We 209 

have shown recently that the crystallization process does affect the optoelectronic 210 

properties through the modulation of the lattice strain8,13. Raman analysis 9,29 on the 211 

meso-phase of MAPbI3 (see Figure S14 in the SI) suggests a more distorted structural 212 

arrangement, thus dipoles in the small crystals might be more randomly oriented within 213 

the inorganic cage. Of course, this can be induced by different factors, e.g. the 214 

crystallization procedure, the presence of dangling bonds on the surface, or the 215 

influence of external agents.  216 

The organic cation has a permanent dipole moment, generating an electrostatic 217 

potential. If free to rotate, the dipoles will respond in a dielectric manner. This increases 218 

the low frequency (hundreds of GHz) dielectric constant up to 35 37,38 in MAPbI3. The 219 

Mott-Wannier exciton binding energy can be written as 𝐸𝐸𝑏𝑏 =  𝑚𝑚
∗ 𝑒𝑒4

ℏ2ℰ2
. If we take the optical 220 

frequency dielectric constant (ε ~ 5) this value is 45 meV, with an effective exciton Bohr 221 

radius of 4 nm. The binding energy is in very good agreement with the experimental 222 

value of ~50 meV 12. However, this model is valid only if the Coulomb interaction 223 



between the electron and hole is strong enough (and thus the kinetic energy of the 224 

small exciton high enough) that the slower lattice dielectric response does not screen 225 

the interaction. If the exciton is less strongly bound, we must consider also the low 226 

frequency component of the dielectric constant arising from the lattice contributions. 227 

This would result in the exciton sampling a higher dielectric constant, thus decreasing 228 

its binding energy (to 2 meV) and increasing the size to 19 nm, eventually dissociating 229 

it. In order to see how the different screening regimes are linked to the crystallization 230 

process we consider the microscopic effect of disorder and temperature by sampling the 231 

electrostatic potential resulting from simulating mono-crystalline and polycrystalline 232 

films. We describe the changes in electrostatic potential upon moving from a large grain 233 

to microcrystalline structure by extending a Monte Carlo procedure based upon a model 234 

Hamiltonian parameterized for MAPbI3 39. The grain boundaries are induced by 235 

incorporating inactive lattice sites (“point defects”) in the simulation (at densities of 6% 236 

and 10%), which enforces polycrystallinity within the simulation domains. The standard 237 

deviation in the electrostatic potential is plotted as a function of temperature and defect 238 

density (degree of polycrystallinity) in Figure 4 (top panel), while representative domain 239 

structures, and associated electrostatic potentials, are shown in Figure 4a-c (bottom 240 

panels). 241 

For the mono-crystalline system, the standard deviation in the electrostatic potential 242 

drops to zero with decreasing temperature. All the rotational disorder of the organic 243 

cations is quenched leading to complete order and formation of fully twinned domains. 244 

Disorder grows with temperature as would be expected from statistical mechanics, 245 

generating increasing electrostatic potential variance. We note that this is in full 246 



agreement with a recent work published by R. Nicholas and co-workers, which reports 247 

an increase in the exciton binding energy upon reduction of temperature16.  At room 248 

temperature, the electrostatic potential is fairly disordered, with a standard deviation of 249 

163 meV, and the degree of polycrystallinity matters less at the level of defect density 250 

considered as all samples are thermally disordered. At lower temperatures however, the 251 

variation in electrostatic potential is proportional to the degree of polycrystallinity and 252 

does not disappear at 0K for the polycrystalline films (explicit tetragonal-orthorhombic 253 

phase transitions are not treated by the model). The largest variation in electrostatic 254 

potential occurs at grain boundaries, where the dipole twinning is disrupted (see Figure 255 

4a-c bottom panels, dipoles alignment are represented in different morphologies and 256 

temperatures). These simulations confirm an interesting trend, that the variance of the 257 

electrostatic potential (i.e. local screening) can be controlled by the local order within the 258 

crystal. With larger, less defective, crystals the variance is minimized. Thus, electron-259 

hole separation due to electrostatic disorder should be significant in small crystals 260 

(countering the Coulomb attraction between electrons and holes) but weaker in large 261 

crystals (allowing for Wannier exciton formation).  262 

A single crystal sample should represent the ultimate case study for our model. 263 

However, as mentioned earlier, discrepancies can be found in literature with regards to 264 

the optical properties of such a sample17,18.  Indeed we have observed that a single 265 

crystal can show energetic dishomogeneity within surface and bulk phases with respect 266 

to the optical gap, following the same trend as the small and large crystallites (see 267 

Figure S15 in the SI). This can be understood from the presence of defects and 268 

fluctuations at the crystal termination. The surface of the single crystal is an extended 269 



defect and it should be considered as comparable to the sample made of small 270 

crystallites. Due to the high absorbance of the single crystal, the absorption spectra 271 

presented in literature have been measured through reflectivity17,18, which is more 272 

sensitive to the surface rather than the bulk of the semiconductor. Thus, according to 273 

our model, we do not expect to see excitonic features. On the other hand, we have 274 

noticed that the EQE spectra (which may be more sensitive to the bulk properties of the 275 

semiconductor) of solar cells embodying single crystal of MAPbI3  shows a defined 276 

exciton like peak at the band edge in contrast to polycrystalline thin-film based 277 

devices18. This observation suggests the strengthening of an excitonic transition, at 278 

room temperature, in the bulk of the single crystal as we predict. 279 

Thus we conclude that the sensitivity of the molecular order to the crystal quality, 280 

defects, as well as induced strain and device history, implies that there is considerable 281 

scope in the material processing to tune the nature and the dynamics of the 282 

photophysical mechanisms characterizing each sample. Control of the dynamic 283 

polarization effect, which can provide both free carrier and excitonic regimes for a single 284 

material composition, may open up a plethora of novel optoelectronic applications. 285 

 286 

Experimental Methods: 287 

Synthesis of the Precursor solutions: 288 

Methylammonium iodide salt: The precursor solution of perovskite was prepared 289 

following the well-established method reported in literature1.Methylamine solution (33% 290 

wt. in absolute ethanol, Sigma-Aldrich) was reacted with hydroiodic acid (57% wt. in 291 



water, Sigma-Aldrich), with excess methylamine in ethanol at 0°C. Crystallization of 292 

CH3NH3I was achieved using a rotary evaporator; a white colored powder was formed, 293 

indicating successful crystallization. The salt was washed twice in diethyl ether to 294 

remove impurities. 295 

Methylammonium bromide salt. The solution was prepared as reported elsewhere6.The 296 

solution was prepared by adding methylamine solution (33% wt. in absolute ethanol, 297 

Sigma-Aldrich) and hydrobromic acid (48% wt. in water, Sigma-Aldrich) to 100 ml of 298 

absolute ethanol. The reaction mixture was stirred at 0°C. The solvent was removed by 299 

rotary evaporation. The obtained white crystals were washed with anhydrous diethyl 300 

ether and recrystallized in ethanol. The perovskite precursor solution was prepared by 301 

mixing CH3NH3Br and PbBr2 in a 1:1 molar ratio in anhydrous N,N-dimethylformamide 302 

to give concentrations of 20% and 5% wt.  303 

Preparation of samples for spectroscopy: 304 

All the samples were prepared in a controlled nitrogen atmosphere either on glass 305 

microscope slides or on mesoporous Al2O3. 306 

Mesoporous Al2O3: a commercial alumina nanoparticles dispersion (20% wt. in IPA, 307 

nanoparticles average size around 50 nm, Sigma-Aldrich) was spin-coated at 2000 rpm 308 

to form a ~3 μm thick mesoporous layer. These were then dried at 150°C for 30 minutes 309 

in air and 10 minutes under inert atmosphere.  310 

CH3NH3PbI3 deposition method on mesoporous Al2O3: A hot (70°C) solution of PbI2 in 311 

DMF (0.5M) was spin coated at 2000 rpm for 60 seconds and subsequently annealed at 312 

70°C for 30 minutes. After letting it cool down to room temperature, the substrate was 313 



dipped at room temperature in a CH3NH3I solution (0.063 M) in anhydrous IPA for 2 314 

minutes. Samples are finally rinsed in anhydrous IPA to remove the excess of 315 

unreacted CH3NH3I . 316 

Glass: the substrates were cleaned (two cycles of water, acetone and IPA in an 317 

ultrasonic bath for 10 minutes each) followed by an oxygen plasma treatment for 10 318 

minutes.  319 

CH3NH3PbI3 deposition method on glass: A hot (70°C) solution of PbI2 in DMF (1M) 320 

was spin coated at 2000 rpm for 60 sec in order to obtain a 300 nm thick layer. A 321 

subsequent annealing at 70°C for 30 min was required to obtain the PbI2 thin film. After 322 

letting it cool down to room temperature, the substrate was dipped in a CH3NH3I 323 

solution in anhydrous IPA for 2 minutes. To obtain samples with different crystal sizes, 324 

the concentration and temperature of CH3NH3I was varied. To obtain films with ~100 325 

nm crystals (Figure 2a), the concentration was set at 0.063 M, and the dipping was 326 

performed at room temperature, while the concentration was reduced to 0.045 M and 327 

the bath was warmed up to 70°C to obtain crystals above 1μm large (Figure 2b). 328 

Samples are finally rinsed in anhydrous IPA to remove the excess of unreacted 329 

CH3NH3I.  330 

CH3NH3PbBr3 one step-deposition method: CH3NH3Br and PbBr2 were both dissolved 331 

in DMF (concentration of 20% wt. for the deposition on glass substrate and 10%wt. for 332 

deposition in the mesoporous alumina scaffold). The solution was spin coated at 3000 333 

rpm for 60 seconds. A subsequent annealing at 100°C for 15 min is required to obtain 334 

the perovskite thin film.  335 



Scanning Electron Microscopy 336 

High Resolution Scanning Electron Microscopy (HRSEM) was used for Figures 1a and 337 

1d. The samples were sticked on aluminum stubs with ultra smooth double-sided 338 

adhesive tape, made of conductive carbon, specific for UHV systems and then coated 339 

with a 15 nm layer of conductive amorphous carbon. HRSEM observation was carried 340 

out using a JEOL JSM 7500FA scanning electron microscope, equipped with a cold 341 

field emission gun (single crystal tungsten <310> emitter, ultimate resolution of 1 nm) 342 

and operating at 10 kV.  343 

The SEM images shown in Figures 2 have been collected by using an high vacuum 344 

tungsten filament commercial Jeol 6010-LV, with a working bias of 20 kV. 345 

Ultraviolet–visible absorption  346 

Absorption spectra have been recorded using a UV-VIS-NIR spectrophotometer 347 

(PerkinElmer Lambda 1050 model) with a spectral range from 200 nm to 2000 nm, with 348 

a resolution of about 1 nm. 349 

Femtosecond transient absorption set-up:  350 

In a typical pump-probe experiment, the system under study is photoexcited by a short 351 

pump pulse (~120 fs) and its subsequent dynamical evolution is detected by measuring 352 

the transmission changes ΔT of a delayed probe pulse as a function of pump-probe 353 

delay  and probe wavelength . Τhe signal is given by the differential transmission ΔT/T = 354 

[(Tpump on-Tpump off)/Tpump off]. The system is driven by a mode-locked Ti:Sapphire 355 

oscillator (Coherent Micra-18) operating at 80 MHz was used as a fundamental 356 



broadband source. This provided pulses with durations of ~20 fs and a central 357 

wavelength of 800 nm. A grating based pulse stretcher (Coherent 9040) was used to 358 

temporally expand the pulses before amplification in a 250 kHz actively Q-switched 359 

Ti:Sapphire based regenerative amplifier (Coherent RegA 9000). The amplified pulses 360 

were subsequently temporally compressed in a grating based compressor (Coherent 361 

9040), resulting in pulses with temporal widths of ~35 fs and energies of ~6 μJ. A thin 362 

beam splitter is used to split the amplified output into pump and probe beams. The 363 

pump beam is input into a two-pass BBO-based collinear OPA (Coherent 9450), 364 

allowing spectral conversion to any desired wavelength in the 480-750 nm wavelength 365 

range with resulting temporal broadening to ~120 fs. The probe beam was used for 366 

super-continuum generation within a sapphire plate, leading to probe pulses with 367 

significant continuous spectral content from 480-780 nm and temporal widths of ~100 fs. 368 

Both pump and probe pulses were focused and spatially overlapped in the sample 369 

space, with the temporal delay between them given by an optical retro-reflective delay 370 

line located on the pump arm of the system. Great care was taken to ensure the spot 371 

size of the probe beam was significantly smaller than that of the pump beam. The 372 

resulting probe signal typically measured in transmission is coupled into an Acton 373 

SP2300i imaging spectrograph and the dispersed signal was measured by a custom 374 

(Stresing) silicon based CCD linear array. The minimum detectable signal is ΔT/T~10-5. 375 

The pump beam energy density used in the experiment is kept deliberately low (pump 376 

fluence less than 1 µJ/cm2, which results in excitation densities in the order of 1017 cm-377 

3). All the measurements were taken with the samples in a vacuum chamber to prevent 378 

any influence from oxygen or sample degradation. The temperature-dependent 379 



experiments were carried out using a continuous flow static exchange gas cryostat 380 

(Oxford Instruments).The cryostat consist of three chambers, one inside the other. The 381 

sample is housed inside the internal chamber filled with gaseous nitrogen. The 382 

cryogenic liquid (N2) is fluxed inside the second chamber allowing temperature control 383 

of the N2 atmosphere of the sample chamber. Eventually a third chamber is evacuated 384 

(~ 10-5 - 10-6 mbar) in order to assure thermal isolation from the external ambient. A 385 

sensor close to the sample has been mounted in order to accurately monitor the sample 386 

temperature.  387 

Theoretical Simulations 388 

The Starrynight (molecular ferroelectric simulation) code39 was adapted to model 389 

defective domains. Simulations were carried out in two dimensions with a 25 meV 390 

interaction between near-neighbour dipoles, no cage-strain term, a 3 unit-cell cut-off for 391 

dipole interactions and periodic boundary conditions on a two dimensional 250×250 392 

grid. Strain (ordering) terms would be required to fully describe the tetragonal-393 

orthorhombic phase transition and are expected to increase the order-disorder transition 394 

temperature of a phase, and so the effective temperature reported in Figure 4 may be 395 

considerably higher. The initial dipole orientation was random. 105 Monte-Carlo moves 396 

were attempted per site, with a Metropolis algorithm. The electrostatic potential variation 397 

was calculated from the sampled dipole orientation at equilibrium with a 10 unit-cell cut-398 

off. 399 
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Figure Captions 522 

 523 

Figure 1| Temperature-dependent transient absorption spectra of MAPbI3 meso 524 

phase and capping layer. SEM images of (a) the “meso-phase” and of (b), the capping 525 



layer of the 3µm-thick MAPbI3 sample. Note that (a) is showing a zoom-in of figure (b). 526 

(c) Temperature dependence of the TA spectra at 1ps pump-probe delay of the meso 527 

phase; (d), Temperature dependence of the TA spectra at 1ps pump-probe delay of the 528 

“capping layer”. (e), TA spectral evolution between 200fs and 1ns at 170 K of the 529 

capping layer. (f) dynamics probed at 1.72 eV (MA* band) of the capping layer at 170K 530 

compared to the dynamics probed at 1.64eV (PB band) of the same sample at RT. For 531 

all the TA measurements, the excitation wavelength is at 2.38eV with an excitation 532 

density of approximately 5×1017 cm-3. 533 

 534 

Figure 2| Photo-induced excited population of MAPbI3 as a function of the crystal 535 

size. SEM images of perovskite films with average crystal dimension of: (a), < 200 nm 536 

and (b), ~ 1μm. Scale bar: 2µm. (c), TA spectra, at room temperature, at 1 ps pump-537 

probe delay of the two samples (red squares and blue circles, respectively) along with 538 

the TA spectrum (dashed line) of sample (b) taken at 77K, red shifted by 95meV. (d) TA 539 

spectra at different time delays at RT from the sample shown in (b). The inset shows the 540 

dynamics probed at 1.63 eV and 1.66 eV. For all the TA measurements, the excitation 541 

wavelength is at 2.38eV with an excitation density of approximately 5×1017 cm-3.  542 

 543 

Figure 3| Photo-induced excited population of MAPbBr3 as a function of the 544 

crystal size. Uv-vis absorption spectra from MAPbBr3 films with average crystallite 545 

dimension (a) << 100 nm and (b), ~1μm. TA spectra at different time delays at RT from 546 

the sample with (c) small and (d) large crystallites (see SEM images in Figure S12 of 547 



SI). In the inset of Figure 3d the comparison of the TA spectra at 1 ps of small and large 548 

MAPbBr3 crystals. For all the TA measurements, the excitation wavelength is at 3.1 eV 549 

with an excitation density of approximately 1×1017 cm-3 550 

 551 

Figure 4| Multi-scale numerical simulations of dipole alignment in 552 

methylammonium lead iodide. 553 

(Top) Standard deviation of electrostatic potential in Starrynight simulations of 250x250 554 

interacting dipoles (150 x 150 nm crystallite), as a function of temperature. The standard 555 

variation in electrostatic for defect free perovskite crystals (blue) decays reduces to zero 556 

with a decrease in temperature. The 6% point defects (orange) and 10% point defect 557 

(red) trends show that there is non-vanishing disorder in the electrostatic potential, even 558 

at zero temperature. Below the figure we show small excerpts (25x25) of the simulation 559 

showing both dipole alignment (top) by pixel hue, and the resulting electrostatic 560 

potential (bottom). (a) Pure domains at zero Kelvin are highly ordered in a columnar 561 

antiferroelectric alignment leading to a smooth electrostatic potential, whereas defective 562 

crystals (b) at zero Kelvin contain electrostatic potential disorder as a result of frustrated 563 

alignment of the domains at the point defects. Room temperature domains (c) show that 564 

the thermal disorder at room temperature leads to a mostly paraelectric phase, with 565 

considerable electrostatic potential variance.  (d) Schematic representation of electron-566 

hole interaction driven by electrostatic potential fluctuations. In samples where there is 567 

considerable electrostatic potential variation, the exciton will not be stable. 568 

 569 



 570 
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