92 research outputs found

    Alterations of clock gene RNA expression in brain Regions of a triple transgenic model of Alzheimer's Disease

    Get PDF
    A disruption to circadian rhythmicity and the sleep/wake cycle constitutes a major feature of Alzheimer's disease (AD). The maintenance of circadian rhythmicity is regulated by endogenous clock genes and a number of external Zeitgebers, including light. This study investigated the light induced changes in the expression of clock genes in a triple transgenic model of AD (3×Tg-AD) and their wild type littermates (Non-Tg). Changes in gene expression were evaluated in four brain areas¾suprachiasmatic nucleus (SCN), hippocampus, frontal cortex and brainstem¾of 6- and 18-month-old Non-Tg and 3×Tg-AD mice after 12 h exposure to light or darkness. Light exposure exerted significant effects on clock gene expression in the SCN, the site of the major circadian pacemaker. These patterns of expression were disrupted in 3×Tg-AD and in 18-month-old compared with 6-month-old Non-Tg mice. In other brain areas, age rather than genotype affected gene expression; the effect of genotype was observed on hippocampal Sirt1 expression, while it modified the expression of genes regulating the negative feedback loop as well as Rorα, Csnk1ɛ and Sirt1 in the brainstem. In conclusion, during the early development of AD, there is a disruption to the normal expression of genes regulating circadian function after exposure to light, particularly in the SCN but also in extra-hypothalamic brain areas supporting circadian regulation, suggesting a severe impairment of functioning of the clock gene pathway. Even though this study did not demonstrate a direct association between these alterations in clock gene expression among brain areas with the cognitive impairments and chrono-disruption that characterize the early onset of AD, our novel results encourage further investigation aimed at testing this hypothesis

    EPA and DHA Enhance CACT Promoter Activity by GABP/NRF2

    Get PDF
    Carnitine-acylcarnitine translocase (CACT) is a nuclear-encoded mitochondrial carrier that catalyzes the transfer of long-chain fatty acids across the inner mitochondrial membrane for beta-oxidation. In this study, we conducted a structural and functional characterization of the CACT promoter to investigate the molecular mechanism underlying the transcriptional regulation of the CACT gene by n-3 PUFA, EPA and DHA. In hepatic BRL3A cells, EPA and DHA stimulate CACT mRNA and protein expression. Deletion promoter analysis using a luciferase reporter gene assay identified a n-3 PUFA response region extending from -202 to -29 bp. This region did not contain a response element for PPAR alpha, a well-known PUFA-responsive nuclear receptor. Instead, bioinformatic analysis revealed two highly conserved GABP responsive elements within this region. Overexpression of GABP alpha and GABP beta subunits, but not PPAR alpha, increased CACT promoter activity, more remarkably upon treatment with EPA and DHA. ChIP assays showed that n3-PUFA enhanced the binding of GABP alpha to the -202/-29 bp sequence. Furthermore, both EPA and DHA induced nuclear accumulation of GABP alpha. In conclusion, our findings indicate that the upregulation of CACT by n3-PUFA in hepatic cells is independent from PPAR alpha and could be mediated by GABP activation

    Androgen receptor in breast cancer: The "5W" questions

    Get PDF
    Androgen receptor (AR) is expressed in 60-70% of breast cancers (BCs) and the availability of anti-AR compounds, currently used for treating prostate cancer, paves the way to tackle specifically AR-positive BC patients. The prognostic and predictive role of AR in BC is a matter of debate, since the results from clinical trials are not striking, probably due to both technical and biological reasons. In this review, we aimed to highlight WHAT is AR, describing its structure and functions, WHAT to test and HOW to detect AR, WHERE AR should be tested (on primary tumor or metastasis) and WHY studying this fascinating hormone receptor, exploring and debating on its prognostic and predictive role. We considered AR and its ratio with other hormone receptors, analyzing also studies including patients with ductal carcinoma in situ and with early and advanced BC, as well. We also emphasized the effects that both other hormone receptors and the newly emerging androgen-inducible non coding RNAs may have on AR function in BC pathology and the putative implementation in the clinical setting. Moreover, we pointed out the latest results by clinical trials and we speculated about the use of anti-AR therapies in BC clinical practice

    Aberrant Metabolism in Hepatocellular Carcinoma Provides Diagnostic and Therapeutic Opportunities

    Get PDF
    Hepatocellular carcinoma (HCC) accounts for over 80% of liver cancer cases and is highly malignant, recurrent, drug-resistant, and often diagnosed in the advanced stage. It is clear that early diagnosis and a better understanding of molecular mechanisms contributing to HCC progression is clinically urgent. Metabolic alterations clearly characterize HCC tumors. Numerous clinical parameters currently used to assess liver functions reflect changes in both enzyme activity and metabolites. Indeed, differences in glucose and acetate utilization are used as a valid clinical tool for stratifying patients with HCC. Moreover, increased serum lactate can distinguish HCC from normal subjects, and serum lactate dehydrogenase is used as a prognostic indicator for HCC patients under therapy. Currently, the emerging field of metabolomics that allows metabolite analysis in biological fluids is a powerful method for discovering new biomarkers. Several metabolic targets have been identified by metabolomics approaches, and these could be used as biomarkers in HCC. Moreover, the integration of different omics approaches could provide useful information on the metabolic pathways at the systems level. In this review, we provided an overview of the metabolic characteristics of HCC considering also the reciprocal influences between the metabolism of cancer cells and their microenvironment. Moreover, we also highlighted the interaction between hepatic metabolite production and their serum revelations through metabolomics researches

    Modulation of the oxidative stress and lipid peroxidation by endocannabinoids and their lipid analogues

    Get PDF
    Growing evidence supports the pivotal role played by oxidative stress in tissue injury development, thus resulting in several pathologies including cardiovascular, renal, neuropsychiatric, and neurodegenerative disorders, all characterized by an altered oxidative status. Reactive oxygen and nitrogen species and lipid peroxidation-derived reactive aldehydes including acrolein, malondialdehyde, and 4-hydroxy-2-nonenal, among others, are the main responsible for cellular and tissue damages occurring in redox-dependent processes. In this scenario, a link between the endocannabinoid system (ECS) and redox homeostasis impairment appears to be crucial. Anandamide and 2-arachidonoylglycerol, the best characterized endocannabinoids, are able to modulate the activity of several antioxidant enzymes through targeting the cannabinoid receptors type 1 and 2 as well as additional receptors such as the transient receptor potential vanilloid 1, the peroxisome proliferator-activated receptor alpha, and the orphan G protein-coupled receptors 18 and 55. Moreover, the endocannabinoids lipid analogues N-acylethanolamines showed to protect cell damage and death from reactive aldehydes-induced oxidative stress by restoring the intracellular oxidants-antioxidants balance. In this review, we will provide a better understanding of the main mechanisms triggered by the cross-talk between the oxidative stress and the ECS, focusing also on the enzymatic and non-enzymatic antioxidants as scavengers of reactive aldehydes and their toxic bioactive adducts

    Alteration of the mitochondrial activity and lipidic metabolism caused by the selective stimulation of M2 muscarinic receptors in human glioblastoma cells

    Get PDF
    Background and aims: Glioblastoma is the most malignant human brain tumor characterized by heterogeneous cell populations, including undifferentiated cells defined Glioblastoma Stem cells (GSCs), responsible for the beginning of neoplastic process and recurrence formation. Previous studies demonstrated how the activation of M2 muscarinic receptor by orthosteric agonist Arecaidine Propargyl Ester (APE) and dualsteric agonist N-8-Iper caused a significant decrease of cell proliferation and survival both in GSCs and in glioblastoma cell lines. Interestingly N8-Iper is capable to activate M2 receptor with higher affinity and at a lower concentration than APE. The aim of this work was to investigate the mechanisms downstream of M2 receptor activation by both agonists responsible of the cytotoxic and pro-apoptotic effects both in U251 cell line and in GSCs. Methods: mitochondrial functionality was evaluated by MITO ID assay, TMRE staining and oxygen consumption measurement by oxygraph. Lipid homeostasis was analyzed by Oil Red O staining, TLC and WB analysis. Autophagy was analyzed by WB analysis and LC3-GFP construct transfection. Results: our results demonstrate the ability of the M2 agonists to induce oxidative stress, alteration of the mitochondrial morphology and activity with consequent alteration of cellular respiration, lipid homeostasis and lipid droplets formation. M2 agonists also induce autophagy, as demonstrated in U251 cells. Conclusions: these results suggest that the selective activation of M2 receptor in particular by N-8-Iper may be a promising therapeutic strategy for the glioblastoma treatment, reducing the possible side effects that may be caused by the high doses of the orthosteric agonist

    Lipotoxicity of palmitic acid is associated with DGAT1 downregulation and abolished by PPARα activation in liver cells

    Get PDF
    Lipotoxicity refers to the harmful effects of excess fatty acids on metabolic health, and it can vary depending on the type of fatty acids involved. Saturated and unsaturated fatty acids exhibit distinct effects, though the precise mechanisms behind these differences remain unclear. Here, we investigated the lipotoxicity of palmitic acid (PA), a saturated fatty acid, compared with oleic acid (OA), a monounsaturated fatty acid, in the hepatic cell line HuH7. Our results demonstrated that PA, unlike OA, induces lipotoxicity, endoplasmic reticulum (ER) stress, and autophagy inhibition. Compared with OA, PA treatment leads to less lipid droplet (LD) accumulation and a significant reduction in the mRNA and protein level of diacylglycerol acyltransferase 1 (DGAT1), a key enzyme of triacylglycerol synthesis. Using modulators of ER stress and autophagy, we established that DGAT1 downregulation by PA is closely linked to these cellular pathways. Notably, the ER stress inhibitor 4-phenylbutyrate can suppress PA-induced DGAT1 downregulation. Furthermore, knockdown of DGAT1 by siRNA or with A922500, a specific DGAT1 inhibitor, resulted in cell death, even with OA. Both PA and OA increased the oxygen consumption rate; however, the increase associated with PA was only partially coupled to ATP synthesis. Importantly, treatment with GW7647 a specific PPARα agonist mitigated the lipotoxic effects of PA, restoring PA-induced ER stress, autophagy block, and DGAT1 suppression. In conclusion, our study highlights the crucial role of DGAT1 in PA-induced lipotoxicity, broadening the knowledge of the mechanisms underlying hepatic lipotoxicity and providing the basis for potential therapeutic interventions
    corecore