128 research outputs found

    Calcium Homeostasis in Myogenic Differentiation Factor 1 (MyoD)-Transformed, Virally-Transduced, Skin-Derived Equine Myotubes

    Get PDF
    Dysfunctional skeletal muscle calcium homeostasis plays a central role in the pathophysiology of several human and animal skeletal muscle disorders, in particular, genetic disorders associated with ryanodine receptor 1 (RYR1) mutations, such as malignant hyperthermia, central core disease, multiminicore disease and certain centronuclear myopathies. In addition, aberrant skeletal muscle calcium handling is believed to play a pivotal role in the highly prevalent disorder of Thoroughbred racehorses, known as Recurrent Exertional Rhabdomyolysis. Traditionally, such defects were studied in human and equine subjects by examining the contractile responses of biopsied muscle strips exposed to caffeine, a potent RYR1 agonist. However, this test is not widely available and, due to its invasive nature, is potentially less suitable for valuable animals in training or in the human paediatric setting. Furthermore, increasingly, RYR1 gene polymorphisms (of unknown pathogenicity and significance) are being identified through next generation sequencing projects. Consequently, we have investigated a less invasive test that can be used to study calcium homeostasis in cultured, skin-derived fibroblasts that are converted to the muscle lineage by viral transduction with a MyoD (myogenic differentiation 1) transgene. Similar models have been utilised to examine calcium homeostasis in human patient cells, however, to date, there has been no detailed assessment of the cells’ calcium homeostasis, and in particular, the responses to agonists and antagonists of RYR1. Here we describe experiments conducted to assess calcium handling of the cells and examine responses to treatment with dantrolene, a drug commonly used for prophylaxis of recurrent exertional rhabdomyolysis in horses and malignant hyperthermia in humans

    Factor Xa Generation by Computational Modeling: An Additional Discriminator to Thrombin Generation Evaluation

    Get PDF
    Factor (f)Xa is a critical enzyme in blood coagulation that is responsible for the initiation and propagation of thrombin generation. Previously we have shown that analysis of computationally generated thrombin profiles is a tool to investigate hemostasis in various populations. In this study, we evaluate the potential of computationally derived time courses of fXa generation as another approach for investigating thrombotic risk. Utilizing the case (n = 473) and control (n = 426) population from the Leiden Thrombophilia Study and each individual's plasma protein factor composition for fII, fV, fVII, fVIII, fIX, fX, antithrombin and tissue factor pathway inhibitor, tissue factor-initiated total active fXa generation was assessed using a mathematical model. FXa generation was evaluated by the area under the curve (AUC), the maximum rate (MaxR) and level (MaxL) and the time to reach these, TMaxR and TMaxL, respectively. FXa generation was analyzed in the entire populations and in defined subgroups (by sex, age, body mass index, oral contraceptive use). The maximum rates and levels of fXa generation occur over a 10- to 12- fold range in both cases and controls. This variation is larger than that observed with thrombin (3–6 fold) in the same population. The greatest risk association was obtained using either MaxR or MaxL of fXa generation; with an ∼2.2 fold increased risk for individuals exceeding the 90th percentile. This risk was similar to that of thrombin generation(MaxR OR 2.6). Grouping defined by oral contraceptive (OC) use in the control population showed the biggest differences in fXa generation; a >60% increase in the MaxR upon OC use. FXa generation can distinguish between a subset of individuals characterized by overlapping thrombin generation profiles. Analysis of fXa generation is a phenotypic characteristic which may prove to be a more sensitive discriminator than thrombin generation among all individuals

    Human skeletal muscle plasmalemma alters its structure to change its Ca2+-handling following heavy-load resistance exercise

    Get PDF
    High-force eccentric exercise results in sustained increases in cytoplasmic Ca2+ levels ([Ca2+]cyto), which can cause damage to the muscle. Here we report that a heavy-load strength training bout greatly alters the structure of the membrane network inside the fibres, the tubular (t-) system, causing the loss of its predominantly transverse organization and an increase in vacuolation of its longitudinal tubules across adjacent sarcomeres. The transverse tubules and vacuoles displayed distinct Ca2+-handling properties. Both t-system components could take up Ca2+ from the cytoplasm but only transverse tubules supported store-operated Ca2+ entry. The retention of significant amounts of Ca2+ within vacuoles provides an effective mechanism to reduce the total content of Ca2+ within the fibre cytoplasm. We propose this ability can reduce or limit resistance exercise-induced, Ca2+-dependent damage to the fibre by the reduction of [Ca2+]cyto to help maintain fibre viability during the period associated with delayed onset muscle soreness

    Bioaccessibility of selenium after human ingestion in relation to its chemical species and compartmentalization in maize

    Get PDF
    International audienceSelenium is a micronutrient needed by all living organisms including humans, but often present in low concentration in food with possible deficiency. From another side, at higher concentrations in soils as observed in seleniferous regions of the world, and in function of its chemical species, Se can also induce (eco)toxicity. Root Se uptake was therefore studied in function of its initial form for maize (Zea mays L.), a plant widely cultivated for human and animal food over the world. Se phytotoxicity and compartmentalization were studied in different aerial plant tissues. For the first time, Se oral human bioaccessibility after ingestion was assessed for the main Se species (SeIV and SeVI) with the BARGE ex vivo test in maize seeds (consumed by humans), and in stems and leaves consumed by animals. Corn seedlings were cultivated in hydroponic conditions supplemented with 1 mg L−1 of selenium (SeIV, SeVI, Control) for 4 months. Biomass, Se concentration, and bioaccessibility were measured on harvested plants. A reduction in plant biomass was observed under Se treatments compared to control, suggesting its phytotoxicity. This plant biomass reduction was higher for selenite species than selenate, and seed was the main affected compartment compared to control. Selenium compartmentalization study showed that for selenate species, a preferential accumulation was observed in leaves, whereas selenite translocation was very limited toward maize aerial parts, except in the seeds where selenite concentrations are generally high. Selenium oral bioaccessibility after ingestion fluctuated from 49 to 89 % according to the considered plant tissue and Se species. Whatever the tissue, selenate appeared as the most human bioaccessible form. A potential Se toxicity was highlighted for people living in seleniferous regions, this risk being enhanced by the high Se bioaccessibility

    Anticoagulants and the Propagation Phase of Thrombin Generation

    Get PDF
    The view that clot time-based assays do not provide a sufficient assessment of an individual's hemostatic competence, especially in the context of anticoagulant therapy, has provoked a search for new metrics, with significant focus directed at techniques that define the propagation phase of thrombin generation. Here we use our deterministic mathematical model of tissue-factor initiated thrombin generation in combination with reconstructions using purified protein components to characterize how the interplay between anticoagulant mechanisms and variable composition of the coagulation proteome result in differential regulation of the propagation phase of thrombin generation. Thrombin parameters were extracted from computationally derived thrombin generation profiles generated using coagulation proteome factor data from warfarin-treated individuals (N = 54) and matching groups of control individuals (N = 37). A computational clot time prolongation value (cINR) was devised that correlated with their actual International Normalized Ratio (INR) values, with differences between individual INR and cINR values shown to derive from the insensitivity of the INR to tissue factor pathway inhibitor (TFPI). The analysis suggests that normal range variation in TFPI levels could be an important contributor to the failure of the INR to adequately reflect the anticoagulated state in some individuals. Warfarin-induced changes in thrombin propagation phase parameters were then compared to those induced by unfractionated heparin, fondaparinux, rivaroxaban, and a reversible thrombin inhibitor. Anticoagulants were assessed at concentrations yielding equivalent cINR values, with each anticoagulant evaluated using 32 unique coagulation proteome compositions. The analyses showed that no anticoagulant recapitulated all features of warfarin propagation phase dynamics; differences in propagation phase effects suggest that anticoagulants that selectively target fXa or thrombin may provoke fewer bleeding episodes. More generally, the study shows that computational modeling of the response of core elements of the coagulation proteome to a physiologically relevant tissue factor stimulus may improve the monitoring of a broad range of anticoagulants

    Natural Variation in Grain Selenium Concentration of Wild Barley, Hordeum spontaneum, Populations from Israel

    Get PDF
    Wild barley (Hordeum spontaneum), the progenitor of cultivated barley, is an important genetic resource for cereal improvement. Selenium (Se) is an essential trace mineral for humans and animals with antioxidant, anticancer, antiarthropathy, and antiviral effects. In the current study, the grain Se concentration (GSeC) of 92 H. spontaneum genotypes collected from nine populations representing different habitats in Israel was investigated in the central area of Guizhou Province, China. Remarkable variations in GSeC were found between and within populations, ranging from 0 to 0.387 mg kg−1 among the 92 genotypes with an average of 0.047 mg kg−1. Genotype 20_C from the Sede Boqer population had the highest GSeC, while genotype 25_1 from the Atlit population had the lowest. The mean value of GSeC in each population varied from 0.010 to 0.105 mg kg−1. The coefficient of variation for each population ranged from 12% to 163%. Significant correlations were found between GSeC and 12 ecogeographical factors out of 14 studied. Habitat soil type also significantly affected GSeC. The wild barley exhibited wider GSeC ranges and greater diversity than its cultivated counterparts. The higher Se grain concentrations found in H. spontaneum populations suggest that wild barley germplasm confer higher abilities for Se uptake and accumulation, which can be used for genetic studies of barley nutritional value and for further improvement of domesticated cereals
    corecore