365 research outputs found

    Towards a reliable face recognition system.

    Get PDF
    Face Recognition (FR) is an important area in computer vision with many applications such as security and automated border controls. The recent advancements in this domain have pushed the performance of models to human-level accuracy. However, the varying conditions in the real-world expose more challenges for their adoption. In this paper, we investigate the performance of these models. We analyze the performance of a cross-section of face detection and recognition models. Experiments were carried out without any preprocessing on three state-of-the-art face detection methods namely HOG, YOLO and MTCNN, and three recognition models namely, VGGface2, FaceNet and Arcface. Our results indicated that there is a significant reliance by these methods on preprocessing for optimum performance

    Stacking-fault energies for Ag, Cu, and Ni from empirical tight-binding potentials

    Full text link
    The intrinsic stacking-fault energies and free energies for Ag, Cu, and Ni are derived from molecular-dynamics simulations using the empirical tight-binding potentials of Cleri and Rosato [Phys. Rev. B 48, 22 (1993)]. While the results show significant deviations from experimental data, the general trend between the elements remains correct. This allows to use the potentials for qualitative comparisons between metals with high and low stacking-fault energies. Moreover, the effect of stacking faults on the local vibrational properties near the fault is examined. It turns out that the stacking fault has the strongest effect on modes in the center of the transverse peak and its effect is localized in a region of approximately eight monolayers around the defect.Comment: 5 pages, 2 figures, accepted for publication in Phys. Rev.

    Image Co-localization by Mimicking a Good Detector's Confidence Score Distribution

    Full text link
    Given a set of images containing objects from the same category, the task of image co-localization is to identify and localize each instance. This paper shows that this problem can be solved by a simple but intriguing idea, that is, a common object detector can be learnt by making its detection confidence scores distributed like those of a strongly supervised detector. More specifically, we observe that given a set of object proposals extracted from an image that contains the object of interest, an accurate strongly supervised object detector should give high scores to only a small minority of proposals, and low scores to most of them. Thus, we devise an entropy-based objective function to enforce the above property when learning the common object detector. Once the detector is learnt, we resort to a segmentation approach to refine the localization. We show that despite its simplicity, our approach outperforms state-of-the-art methods.Comment: Accepted to Proc. European Conf. Computer Vision 201

    Residual attention regression for 3D hand pose estimation

    Get PDF

    Multi-view Face Detection Using Deep Convolutional Neural Networks

    Full text link
    In this paper we consider the problem of multi-view face detection. While there has been significant research on this problem, current state-of-the-art approaches for this task require annotation of facial landmarks, e.g. TSM [25], or annotation of face poses [28, 22]. They also require training dozens of models to fully capture faces in all orientations, e.g. 22 models in HeadHunter method [22]. In this paper we propose Deep Dense Face Detector (DDFD), a method that does not require pose/landmark annotation and is able to detect faces in a wide range of orientations using a single model based on deep convolutional neural networks. The proposed method has minimal complexity; unlike other recent deep learning object detection methods [9], it does not require additional components such as segmentation, bounding-box regression, or SVM classifiers. Furthermore, we analyzed scores of the proposed face detector for faces in different orientations and found that 1) the proposed method is able to detect faces from different angles and can handle occlusion to some extent, 2) there seems to be a correlation between dis- tribution of positive examples in the training set and scores of the proposed face detector. The latter suggests that the proposed methods performance can be further improved by using better sampling strategies and more sophisticated data augmentation techniques. Evaluations on popular face detection benchmark datasets show that our single-model face detector algorithm has similar or better performance compared to the previous methods, which are more complex and require annotations of either different poses or facial landmarks.Comment: in International Conference on Multimedia Retrieval 2015 (ICMR

    Tweeting Cameras for Event Detection

    Full text link

    Development of a tight-binding potential for bcc-Zr. Application to the study of vibrational properties

    Get PDF
    We present a tight-binding potential based on the moment expansion of the density of states, which includes up to the fifth moment. The potential is fitted to bcc and hcp Zr and it is applied to the computation of vibrational properties of bcc-Zr. In particular, we compute the isothermal elastic constants in the temperature range 1200K < T < 2000K by means of standard Monte Carlo simulation techniques. The agreement with experimental results is satisfactory, especially in the case of the stability of the lattice with respect to the shear associated with C'. However, the temperature decrease of the Cauchy pressure is not reproduced. The T=0K phonon frequencies of bcc-Zr are also computed. The potential predicts several instabilities of the bcc structure, and a crossing of the longitudinal and transverse modes in the (001) direction. This is in agreement with recent ab initio calculations in Sc, Ti, Hf, and La.Comment: 14 pages, 6 tables, 4 figures, revtex; the kinetic term of the isothermal elastic constants has been corrected (Eq. (4.1), Table VI and Figure 4

    Robust averaging protects decisions from noise in neural computations

    Get PDF
    An ideal observer will give equivalent weight to sources of information that are equally reliable. However, when averaging visual information, human observers tend to downweight or discount features that are relatively outlying or deviant (‘robust averaging’). Why humans adopt an integration policy that discards important decision information remains unknown. Here, observers were asked to judge the average tilt in a circular array of high-contrast gratings, relative to an orientation boundary defined by a central reference grating. Observers showed robust averaging of orientation, but the extent to which they did so was a positive predictor of their overall performance. Using computational simulations, we show that although robust averaging is suboptimal for a perfect integrator, it paradoxically enhances performance in the presence of “late” noise, i.e. which corrupts decisions during integration. In other words, robust decision strategies increase the brain’s resilience to noise arising in neural computations during decision-making

    Interatomic potentials for atomistic simulations of the Ti-Al system

    Full text link
    Semi-empirical interatomic potentials have been developed for Al, alpha-Ti, and gamma-TiAl within the embedded atomic method (EAM) by fitting to a large database of experimental as well as ab-initio data. The ab-initio calculations were performed by the linear augmented plane wave (LAPW) method within the density functional theory to obtain the equations of state for a number of crystal structures of the Ti-Al system. Some of the calculated LAPW energies were used for fitting the potentials while others for examining their quality. The potentials correctly predict the equilibrium crystal structures of the phases and accurately reproduce their basic lattice properties. The potentials are applied to calculate the energies of point defects, surfaces, planar faults in the equilibrium structures. Unlike earlier EAM potentials for the Ti-Al system, the proposed potentials provide reasonable description of the lattice thermal expansion, demonstrating their usefulness in the molecular dynamics or Monte Carlo studies at high temperatures. The energy along the tetragonal deformation path (Bain transformation) in gamma-TiAl calculated with the EAM potential is in a fairly good agreement with LAPW calculations. Equilibrium point defect concentrations in gamma-TiAl are studied using the EAM potential. It is found that antisite defects strongly dominate over vacancies at all compositions around stoichiometry, indicating that gamm-TiAl is an antisite disorder compound in agreement with experimental data.Comment: 46 pages, 6 figures (Physical Review B, in press
    corecore