1,081 research outputs found

    Standard ion transfer potential at the water|butyronitrile interface

    Get PDF
    Butyronitrile is an organic solvent stable enough to be used in photochemical reactions at liquid/liquid interfaces. However, it provides a rather short polarisation window making the analysis of ion transfer across the water|butyronitrile interface challenging. Here, steady-state cyclic voltammetry, at microhole-supported micro-interfaces, was used to measure Gibbs energies of transfer. A linear relationship between the standard Gibbs energies of ion partition for the water|butyronitrile interface and the water|1,2-dichloroethane and water|nitrobencene interfaces was found, making easy to extrapolate the Gibbs energy of other ions from this empiric correlation.Fil: Riva, Julieta Soledad. Swiss Federal Institute Of Technology Epfl; Suiza. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; ArgentinaFil: Bassetto, V. C.. Swiss Federal Institute Of Technology Epfl; SuizaFil: Girault, Hubert. Swiss Federal Institute Of Technology Epfl; SuizaFil: Olaya, A. J.. Swiss Federal Institute Of Technology Epfl, Lausanne

    Random division of an interval

    Get PDF
    The well-known relation between random division of an interval and the Poisson process is interpreted as a Laplace transformation. With the use of this interpretation a number of (in part known) results is derived very easily

    Colored Petri Nets to Verify Extended Event-Driven Process Chains

    Full text link
    Business processes are becoming more and more complex and at the same time their correctness is becoming a critical issue: The costs of errors in business information systems are growing due to the growing scale of their application and the growing degree of automation. In this paper we consider Extended Event-driven Process Chains (eEPCs), a language which is widely used for modeling business processes, documenting industrial reference models and designing workflows. We describe how to translate eEPCs into timed colored Petri nets in order to verify processes given by eEPCs with the CPN Tools

    Feature Nets: behavioural modelling of software product lines

    Get PDF
    Software product lines (SPL) are diverse systems that are developed using a dual engineering process: (a)family engineering defines the commonality and variability among all members of the SPL, and (b) application engineering derives specific products based on the common foundation combined with a variable selection of features. The number of derivable products in an SPL can thus be exponential in the number of features. This inherent complexity poses two main challenges when it comes to modelling: Firstly, the formalism used for modelling SPLs needs to be modular and scalable. Secondly, it should ensure that all products behave correctly by providing the ability to analyse and verify complex models efficiently. In this paper we propose to integrate an established modelling formalism (Petri nets) with the domain of software product line engineering. To this end we extend Petri nets to Feature Nets. While Petri nets provide a framework for formally modelling and verifying single software systems, Feature Nets offer the same sort of benefits for software product lines. We show how SPLs can be modelled in an incremental, modular fashion using Feature Nets, provide a Feature Nets variant that supports modelling dynamic SPLs, and propose an analysis method for SPL modelled as Feature Nets. By facilitating the construction of a single model that includes the various behaviours exhibited by the products in an SPL, we make a significant step towards efficient and practical quality assurance methods for software product lines

    Critical structure factors of bilinear fields in O(N)-vector models

    Full text link
    We compute the two-point correlation functions of general quadratic operators in the high-temperature phase of the three-dimensional O(N) vector model by using field-theoretical methods. In particular, we study the small- and large-momentum behavior of the corresponding scaling functions, and give general interpolation formulae based on a dispersive approach. Moreover, we determine the crossover exponent ϕT\phi_T associated with the traceless tensorial quadratic field, by computing and analyzing its six-loop perturbative expansion in fixed dimension. We find: ϕT=1.184(12)\phi_T=1.184(12), ϕT=1.271(21)\phi_T=1.271(21), and ϕT=1.40(4)\phi_T=1.40(4) for N=2,3,5N=2,3,5 respectively.Comment: 27 page

    An incremental modular technique for checking LTL-X properties on Petri nets

    Get PDF
    Model-checking is a powerful and widespread technique for the verification of finite state concurrent systems. However, the main hindrance for wider application of this technique is the well-known state explosion problem. Modular verification is a promising natural approach to tackle this problem. It is based on the "divide and conquer" principle and aims at deducing the properties of the system from those of its components analysed in isolation. Unfortunately, several issues make the use of modular verification techniques difficult in practice. First, deciding how to partition the system into components is not trivial and can have a significant impact on the resources needed for verification. Second, when model-checking a component in isolation, how should the environment of this component be described? In this paper, we address these problems in the framework of model-checking LTL\X action-based properties on Petri nets. We propose an incremental and modular verification approach where the system model is partitioned according to the actions occurring in the property to be verified and where the environment of a component is taken into account using the linear place invariants of the system
    corecore