
Software and Systems Modeling manuscript No.
(will be inserted by the editor)

Feature Nets
Behavioural modelling of software product lines

Radu Muschevici · José Proença ·
Dave Clarke

Received: date / Accepted: date

Abstract Software product lines (SPL) are diverse systems that are developed using
a dual engineering process: (a) family engineering defines the commonality and vari-
ability among all members of the SPL, and (b) application engineering derives specific
products based on the common foundation combined with a variable selection of fea-
tures. The number of derivable products in an SPL can thus be exponential in the
number of features. This inherent complexity poses two main challenges when it comes
to modelling: Firstly, the formalism used for modelling SPLs needs to be modular and
scalable. Secondly, it should ensure that all products behave correctly by providing the
ability to analyse and verify complex models efficiently. In this paper we propose to
integrate an established modelling formalism (Petri nets) with the domain of software
product line engineering. To this end we extend Petri nets to Feature Nets. While Petri
nets provide a framework for formally modelling and verifying single software systems,
Feature Nets offer the same sort of benefits for software product lines. We show how
SPLs can be modelled in an incremental, modular fashion using Feature Nets, provide
a Feature Nets variant that supports modelling dynamic SPLs, and propose an analysis
method for SPL modelled as Feature Nets. By facilitating the construction of a single
model that includes the various behaviours exhibited by the products in an SPL, we
make a significant step towards efficient and practical quality assurance methods for
software product lines.

Keywords Behavioural Modelling · Software Product Lines · Petri Nets · Variability

Radu Muschevici
Dept. Computer Science, TU Darmstadt
E-mail: radu.muschevici@cs.tu-darmstadt.de

José Proença
iMinds-Distrinet, KU Leuven
and HASLab/INESC TEC, Universidade do Minho
E-mail: jose.proenca@cs.kuleuven.be

Dave Clarke
Dept. Information Technology, Uppsala University
and iMinds-Distrinet, KU Leuven
E-mail: dave.clarke@it.uu.se

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55640504?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Radu Muschevici et al.

1 Introduction

The need to tailor software applications to varying requirements, such as specific hard-
ware, markets or customer demands, is growing. If each application variant is main-
tained individually, the overhead of managing all the variants quickly becomes infea-
sible [33]. Software Produce Line Engineering (SPLE) is seen as a solution to this
problem. A Software Product Line (SPL) is a set of software products that share a
number of core properties but also differ in certain, well-defined aspects. The products
of an SPL are defined and implemented in terms of features, which are subsequently
combined to obtain the final software products. The key advantage hereby over tra-
ditional approaches is that all products can be developed and maintained together.
A challenge for SPLE is to ensure that all products meet their specifications without
having to check each product individually, by checking the product line itself. This
raises the need for novel SPL-specific formalisms to model SPLs and reason about and
verify their properties.

This paper presents a line of research into using Petri nets to model the behaviour of
software product lines. Petri nets [30] provide a solid formal basis for system modelling.
They have been studied and applied widely, and they come with a wealth of formal
analysis and verification techniques. The modelling formalism we develop is Feature
Petri Nets, or Feature Nets (FN) for short. Feature Nets are a Petri net extension that
enables the specification of the behaviour of an entire software product line (a set of
systems) in one single model. The behaviour of a FN is conditional on the features
appearing in the product line. The ability to model the behaviour of a set of systems
in a single model brings us closer to the goal of reasoning about multiple systems in a
practical way.

We extend Petri nets in three steps. We start by guiding the execution of a Petri
net based on the features that are selected. We call this model transition-labelled Fea-
ture Nets (FN) because it conditions the firing of transitions on the feature selection.
In the second step we introduce a mechanism to dynamically update the feature se-
lection based on the execution of the Petri net. This model is called Dynamic Feature
Nets (DFN). In a third step we improve upon the original FN definition with the aim
of supporting net composition. The improved model allows us to develop a technique
for constructing larger Feature Nets from smaller ones to model the addition of new
features to an SPL. The feature selection is now associated with Petri net arcs, hence
this model is called arc-labelled Feature Nets. We provide correctness criteria for en-
suring that the composition of arc-labelled FNs preserves the behaviour of the original
model(s). Our three Feature Net models provide an elegant separation between be-
haviour, modelled by the underlying Petri net, and available functionality, modelled by
feature sets. This special issue article extends previous publications [31,32], introduc-
ing reachability analysis of Feature Nets and exploiting analysis techniques for Feature
Nets. It includes a more extensive presentation of the formalism, a comprehensive dis-
cussion and reports on practical applications, thus providing a better insight into the
power of Feature Nets.

The paper is structured as follows. Section 2 illustrates the modelling challenge in
SPL engineering with an example, thereby motivating the need for Feature Nets. Sec-
tion 3 provides the necessary background on Petri nets. Section 4 presents transition-
labelled Feature Nets, our original formalism for modelling SPL. Section 5 extends Fea-
ture Nets with a dynamic component that adds support for modelling dynamic SPL.
In Section 6 we improve the original FN definition with the goal to better support

Feature Nets 3

modular composition, presenting arc-labelled Feature Nets. Arc-labelled FN support a
technique for constructing a larger Feature Net from smaller ones to model the addition
of new features to an SPL. Section 7 discusses the encoding of Feature Nets into Petri
nets. Section 8 describes an approach to model check properties of (Dynamic) Feature
Nets. Section 9 surveys related work, and Section 10 concludes the paper.

2 Software Product Line Modelling Challenge

We illustrate the modelling challenge in software product line engineering using an
example of a software product line of coffee vending machines. A manufacturer of
coffee machines offers products to match different demands, from the basic black coffee
dispenser to more sophisticated machines, such as ones that can add milk or sugar,
or charge a payment for each serving. Each machine variant needs to run software
adapted to the selected set of hardware features. Such a family of different software
products that share functionality is typically developed using an SPLE approach, that
is, as one piece of software structured along distinct features. This approach has major
advantages in terms of code reuse, maintenance overhead, and so forth. The challenge
is ensuring that the software works appropriately in all product configurations.

wait ready

coffee

refillable

n

coffee

full

brew coffee

serve

refill coffee

Fig. 1: Petri net model of a basic coffee machine that can only dispense coffee. Labels
on places indicate states of the system; labels on transitions indicate its behaviour.

Petri nets [30] are used to specify how systems behave. Fig. 1 presents an example
of a Petri net for a coffee machine. This has a capacity for n coffee servings; it can
brew and dispense coffee, and refill the machine with new coffee supplies. If we now
add an optional Milk feature, so that the machine can also add milk to a coffee serving,
we need to adapt the Petri net, not only to include the functionality of adding milk,
but also to be able to control whether or not this feature is present in the resulting
software product.

To address the challenge of modelling a software product line with multiple fea-
tures, which may or may not be included in any given product, we first introduce
transition-labelled Feature Nets. Feature Net transitions are annotated with applica-
tion conditions [34], which are propositional formula over features that reflect when the
transition is enabled. Later we introduce a variation of Feature Nets in which applica-

4 Radu Muschevici et al.

tion conditions are placed on arcs, rather than transitions, called arc-labelled Feature
Nets.

One advantage of both transition-labelled and arc-labelled Feature Nets is that they
enable the superposition of the behaviour of the various products (given by different
feature selections) in the same model.

wait ready

coffee

refillable

n

coffee

full

brew coffee

Co↵ee

serve

Co↵ee

refill coffee

Co↵ee

m

milk

full

milk

refillable

milk

ready

add milk

Co↵ee ^ Milk

refill milk

Co↵ee ^ Milk

serve coffee w/milk

Co↵ee ^ Milk

Fig. 2: Transition-labelled FN of the product line with variants {{Co↵ee},
{Co↵ee,Milk}} showing each product in its initial state. Each transition has an ap-
plication condition attached (label above transitions). Colour is used to visually group
transitions by application conditions.

Fig. 2 exemplifies a transition-labelled FN of a coffee machine with a milk reservoir.
It considers a product line whose products are over the set of features {Co↵ee,Milk},
where Co↵ee is compulsory and Milk is optional.1 The conditions on the transitions
reflect that the three transitions on the right-hand side can be taken only when both
features Coffee and Milk are present, and the three transitions on the left-hand side
can be taken when the Coffee feature is present. The restriction of the example net to
the transitions that can fire for feature selection {Co↵ee} is exactly the Petri net in
Fig. 1, after removing unreachable places.

Fig. 3 exemplifies an arc-labelled Feature Net of a similar coffee machine SPL. The
application condition above each arc reflects that the arc is present only when the
condition evaluates to true. Only then does the arc affect behaviour. If the condition
is false, the arc has no effect on behaviour. Consequently, the three transitions on the
left-hand side can only fire when the Co↵ee feature is present; the two transitions on
the right-hand side can be taken only when the feature Milk is present. Observe that
the restriction of this example net to the transitions that can fire for feature selection
{Co↵ee} is, again, exactly the Petri net in Fig. 1, after removing unreachable places.

Arc-labelled Feature Nets have advantages over transition-labelled Feature Nets
when it comes to supporting a modular approach to modelling. This will become clear
in Section 6.1, where a composition technique for Feature Nets is proposed.

1 This structural information is not specified by the FN. The features included in the SPL
and their inter-dependencies are typically specified in a feature model. Feature Nets establish
the connection to feature models by way of application conditions.

Feature Nets 5

wait ready

coffee

refillable

n

coffee

full

brew coffee

C

o

↵

e

e

C

o

↵

e

e

C

o

↵

e

e

C

o

↵

e

e

serve

C

o

↵

e

e

C

o

↵

e

e

refill coffee

C

o

↵

e

e

C

o

↵

e

e

m

milk

full

milk

refillable

add milk

M

i

l

k

M

i

l

k

M

i

l

k

M

i

l

k

refill milk

M

i

l

k

M

i

l

k

Fig. 3: Arc-labelled FN of the product line {{Co↵ee}, {Co↵ee,Milk}}. Each arc has an
application condition attached.

3 Petri Nets

We start with some necessary preliminaries, first by defining multisets and basic oper-
ations over multisets. Then we define Petri nets and their behaviour.

Definition 1 (Multiset) A multiset over a set S is a mapping M : S ! N.

We view a set S as a multiset in the natural way, that is, S(x) > 0 if x 2 S, and
S(x) = 0 otherwise. We also lift arithmetic operators to multisets as follows. For any
function � : N⇥ N ! N and multisets M1, M2, define M1 �M2 as (M1 �M2)(x) =

M1(x)�M2(x).
To ground our theory, we recall the terminology and notation surrounding Petri

nets [15].

Definition 2 (Petri Net) A Petri net is a tuple (S, T,R,M0), where S and T are two
disjoint finite sets, R is a relation on S [T (the flow relation) such that R\ (S⇥S) =

R\(T⇥T) = ;, and M0 is a multiset over S, called the initial marking. The elements of
S are called places and the elements of T are called transitions. Places and transitions
are called nodes.

Sometimes we omit the initial marking M0.

Definition 3 (Marking of a Petri Net) A marking M of a Petri net (S, T,R) is a
multiset over S. A place s 2 S is marked iff M(s) > 0.

Definition 4 (Pre-sets and post-sets) Given a node x of a Petri net, the set •
x =

{y | (y, x) 2 R} is the pre-set of x and the set x

•
= {y | (x, y) 2 R} is the post-set

of x.

Definition 5 (Enabling) A marking M enables a transition t 2 T if it marks every
place in •

t, that is, if M � •
t with •

t regarded as a multiset.

The behaviour of a Petri net is a sequence of states, where each state is defined
by a marking. The change from the current state to a new state occurs by the firing
of a transition. A transition t can fire if it is enabled. Firing transition t changes the
marking of the Petri net by decreasing the marking of each place in the pre-set of t by
one, and increasing the marking of each place in the post-set of t by one.

6 Radu Muschevici et al.

Definition 6 (Transition occurrence rule) Given a Petri net N = (S, T,R), a
transition t 2 T occurs, leading from a state with marking Mi to a state with marking
Mi+1, denoted Mi

t�! Mi+1, iff the following two conditions are met:

Mi � •
t (enabling)

Mi+1 = (Mi � •
t) + t

• (computing)

The behaviour defined above is also known as the firing of a transition. Transitions
fire sequentially, that is, only one transition occurs at a time.

Definition 7 (Petri net trace) Given a Petri net N = (S, T,R,M0), the behaviour
the net exhibits by passing through a sequence of states with markings M0, . . . ,Mn,
where each change of marking is triggered by a transition occurrence Mi

ti�! Mi+1, is

called a trace. A trace is written M0
t0�! M1

t1�! · · ·
tn�1���! Mn.

Definition 8 (Petri net behaviour) The behaviour of a Petri net is given by the
set of all traces from a given initial marking.

For example, the following trace is part of the behaviour of the coffee machine Petri
net illustrated in Fig. 1 (the tuples represent markings of the places listed on the left).

wait

ready

coffee full

coffee refillable

0

BB@

1

0

n

0

1

CCA
brew coffee���������!

0

BB@

0

1

n� 1

1

1

CCA
serve����!

0

BB@

1

0

n� 1

1

1

CCA

To verify properties over a Petri net it is usually more convenient to represent
all possible traces in a more compact way, using reachability graphs. The reachability
graph of a Petri net has markings as nodes, transitions as edges, and an initial node
given by the initial marking. Furthermore, only markings that can be reached from the
initial marking are represented in the reachability graph. Traditional model-checkers
can then be used to analyse reachability graphs.

Definition 9 (Reachability graph) Let the reachability set of a Petri net N =

(S, T,R,M0) be the smallest set Reach(N) that contains M0 and all markings Mn

such that M0
t0�! · · ·

tn�1���! Mn is a trace of N , for some transitions t0, . . . , tn�1. The
reachability graph of N is the tuple G = (Reach(N), E, T,M0) where Reach(N) are the
nodes of the graph, E ✓ Reach(N) ⇥ T ⇥ Reach(N) are the edges between markings
such that (M, t,M

0
) 2 E iff M

t�! M

0, T are the transitions of N , and M0 is the initial
state.

Traversals of the reachability graph of a Petri net N correspond to traces of N .
The example from Fig. 1 has the following reachability graph when n = 2, where
(a b c d) represents the marking {wait 7! a,ready 7! b,coffee full 7! c,coffee

refillable 7! d}.

1 0 2 0 1 0 1 1 1 0 0 2

0 1 2 0 0 1 1 1 0 1 0 2

brew

refill

brew

refill

serve

refill

serve

refill

serve

Feature Nets 7

4 Transition-Labelled Feature Nets

Transition-labelled Feature Nets are a Petri net variant used to model the behaviour of
an entire software product line. For this purpose, transition-labelled FN have applica-
tion conditions [34] attached to their transitions. An application condition is a boolean
logical formula over a set of features, describing the feature combinations to which the
transition applies. It constitutes a necessary (although not sufficient) condition for the
transition to fire. In effect, if the application condition is false, it is as if the transition
was not present.

Throughout this section, the term Feature Net (FN) refers to a transition-labelled
Feature Net. We define Feature Nets and give their semantics. We present two semantic
accounts of FN. First, when a set of features is selected, an FN directly models the
behaviour of the product corresponding to the feature selection. Second, by projecting
an FN onto a feature selection, one obtains a Petri net describing the behaviour of the
same product. We show that these two notions of semantics coincide.

Definition 10 (Application condition [34]) An application condition ' is a propo-
sitional formula over a set of features F , defined by the following grammar:

' ::= a | ' ^ ' | ¬' | >,

where a 2 F . The remaining logical connectives can be encoded as usual. Write �F to
denote the set of all application conditions over F .

Definition 11 (Satisfaction of application conditions) Given an application con-
dition ' 2 �F and a set of features FS ✓ F , called a feature selection, we say that FS
satisfies ', written as FS |= ', defined as follows:

FS |= > always

FS |= a iff a 2 FS

FS |= '1 ^ '2 iff FS |= '1 and FS |= '2

FS |= ¬' iff FS ◆◆|='.

After formally recalling Petri nets and application conditions, we are now in the
position to introduce Feature Nets.

Definition 12 (Feature Net) A Feature Net is a tuple N = (S, T,R,M0, F, f),
where (S, T,R,M0) is a Petri net, F is a set of features, and f : T ! �F is a function
associating each transition with an application condition from �F .

For f(t), the application condition associated with transition t, we write 't. For
conciseness, we say that a feature selection FS satisfies transition t whenever FS |= 't.

4.1 Semantics of Feature Nets

We now define the behaviour of Feature Nets for a given (static) feature selection.

8 Radu Muschevici et al.

Definition 13 (Transition occurrence rule for FN) Given a Feature Net N =

(S, T,R,M0, F, f) and a feature selection FS ✓ F , a transition t 2 T occurs, leading
from a state with marking Mi to a state with marking Mi+1, denoted (Mi,FS) t�!
(Mi+1,FS), iff the following three conditions are met:

Mi � •
t (enabling)

Mi+1 = (Mi � •
t) + t

• (computing)
FS |= 't (satisfaction)

In the above definition the state of the Petri net is denoted by a tuple consisting
of a marking and a feature selection, even though we assume the feature selection is
static (constant). Later on, we will look at dynamic feature selections which can change
during execution.

The transition rule for FN is used to define traces that describe the FN’s behaviour
in the same way as Petri nets.

Definition 14 (FN Trace) Given a Feature Net N = (S, T,R,M0, F, f) and a fea-
ture selection FS ✓ F , the behaviour the net exhibits by passing through a sequence
of markings M0, . . . ,Mn, where each change of marking is triggered by a transition
occurrence (Mi,FS) ti�! (Mi+1,FS), is called a trace over FS . A trace is written

(M0,FS) t0�! (M1,FS) t1�! · · ·
tn�1���! (Mn,FS).

Given an FN, there is a set of traces representing the behaviour of the FN for each
feature selection.

Definition 15 (FN behaviour for a given feature selection) Given a Feature
Net N = (S, T,R,M0, F, f) and a feature selection FS ✓ F , the behaviour of N for
FS , denoted Beh(N,FS) is the set of all traces over FS from the initial marking M0.

If we consider all possible feature selections, we can express the behaviour of the FN.

Definition 16 (FN Behaviour) Given a Feature Net N = (S, T,R,M0, F, f), we
define Beh(N) to be the combined set of behaviours for all feature selections over F :

Beh(N) =

[

FS2PF

Beh(N,FS).

4.2 Projection-based Semantics of FN

We now present an alternative semantics of Feature Nets. Given a feature selection,
the semantics of an FN is a Petri net consisting of just the transitions satisfying the
feature selection.

Definition 17 (Projection) Given a Feature Net N = (S, T,R,M0, F, f) and a fea-
ture selection FS ✓ F , the projection of N onto FS , denoted N # FS , is a Petri
net (S, T

0
, R

0
,M0), with T

0
= {t 2 T | FS |= 't} and the flow relation R

0
=

R \ ((S [T

0
)⇥ (S [T

0
)).

Feature Nets 9

One projects N onto a feature selection FS by evaluating all application conditions
't with respect to FS for transitions t 2 T . If FS does not satisfy 't, then transition
t is removed from the Petri net. All application conditions are also removed when
projecting.

For example, by projecting the FN of the product line {{Co↵ee}, {Co↵ee,Milk}}
(Fig. 2) onto the feature selection {Co↵ee}, the application condition Co↵ee (on transi-
tions serve, brew coffee and refill coffee) evaluates to true, while the application
condition Co↵ee ^Milk (on serve cofeee w/milk, add milk and refill milk) eval-
uates to false. Hence, the latter transitions are removed, along with unreachable places.
The result is the Petri net depicted in Fig. 1.

The behaviour of the projection of a Feature Petri net N onto a feature selection
FS coincides with the behaviour of N for FS , as stated by the following theorem.

Theorem 1 Given a Feature Net N and FS ✓ F , then:

Beh(N,FS)#FS = Beh(N #FS).

By projecting Beh(N,FS) onto the feature selection FS , the feature selection is
removed from the traces of N ’s behaviour.

Proof (✓) We show that every trace � 2 Beh(N,FS) # FS is also a trace in
Beh(N #FS). Firstly, the initial markings M0 coincide in both Petri nets. Secondly, if
(M,FS) t�! (M

0
,FS) then, by Definition 15, FS |= 't, and by Definition 17 it is also

a transition of N #FS . Hence, M t�! M

0.

(◆) Following a similar reasoning as before, we show that every trace � 2 Beh(N #FS)
is also a trace in Beh(N,FS). Observe that, if M

t�! M

0, then t is a transition of
N #FS , and by Definition 17 FS |= 't. Hence, by Definition 15 we conclude that also
(M,FS) t�! (M

0
,FS). ut

4.3 Reachability Analysis

The reachability graph of a Petri net represents the markings reachable from the initial
marking by firing of transitions (c.f. Definition 9). In a Feature Net transitions have
an associated application condition that influences their behaviour. The reachability
graph of a Feature Net is therefore also extended with application conditions, into what
we call a variable reachability graph.

Definition 18 (Variable reachability graph) Let the reachability set of a Feature
Net N = (S, T,R,M0, F, f) be the smallest set Reach(N) that contains M0 and all

markings Mn such that (M0,FS) t0�! · · ·
tn�1���! (Mn,FS) is a trace of N , for some

transitions t0, . . . , tn�1 and a feature selection FS . The variable reachability graph of
N is the tuple G = (Reach(N), E, T, F, f,M0) where Reach(N) are the nodes of the
graph, E ✓ Reach(N) ⇥ T ⇥ Reach(N) are the edges between markings such that
(M, t,M

0
) 2 E iff there is a feature selection FS where (M,FS) t�! (M

0
,FS), T is the

set of transitions of N , F is the set of features of N , f associates each transition from
T to an application condition over F , and M0 is the initial state.

10 Radu Muschevici et al.

s1 s2 s3
t1

F1 ^ ¬F2

t2

F2 1 0 0 0 1 0F1 ^ ¬F2

t1

1 0 0 0 1 0 0 0 1F1 ^ ¬F2

t1

F2

t2

Fig. 4: A Feature Net (left) and its variable reachability graphs (right).

We will also consider a variation of this definition of a variability graph, which we
call a relaxed variable reachability graph. This relaxed variant is intended to be easier to
calculate, while still being accurate enough for model checking purposes. Fig. 4 presents
the encoding of a simple example into these two variability graphs. The labels on the
edges include not only the transitions but also the associated application condition,
given by the function f included in the graph definitions. The top reachability graph
was obtained based on Definition 18, while the second, relaxed version includes an extra
node (0 0 1) that can never be reached from the initial marking if the feature selec-
tion is fixed statically (no feature selection can simultaneously satisfy the application
conditions of T1 and T2). Relaxed variability graphs consider all feature selections at
any given state, therefore including some states that are unreachable when the feature
selection is fixed a priori. A relaxed variability graph has two main advantages. First,
it is simpler to build, by ignoring the feature selections and just including satisfiable
application conditions. Second, it includes transitions and states that are reachable in
a more dynamic environment where the feature selection can change at runtime, which
will be exploited in the next section.

Definition 19 (Relaxed variable reachability graph) Let the relaxed reachable
set of a Feature Net N = (S, T,R,M0, F, f) be the smallest set ReachR(N) such that
M0 2 ReachR(N), and if M 2 ReachR(N) and (M,FS) t�! (M

0
,FS) for some M

0, FS
and t, then M

0 2 ReachR(N). The relaxed variable reachability graph of N is the tuple
GR built in the same way as the variable reachability graph of N (cf. Definition 18),
using ReachR(N) instead of Reach(N) as the set of nodes.

The results regarding the semantics-preserving projection of Feature Nets onto Petri
nets are now lifted to reachability graphs. Intuitively, projecting a variable reachability
graph of a Feature Net N onto a feature selection FS yields a reachability graph. The
same graph is obtained based on the projection of N onto FS . The definition of the
projection of reachability graphs ensures that the above equality always holds.

Definition 20 (Graph projection) Given a variable reachability graph (relaxed or
not) G = (Ns, E, T, F, f,M0) and a feature selection FS ✓ F , the projection of G onto
FS , denoted G#FS , is a reachability graph (Ns, E

0
, T

0
,M0), with E

0
= {(n1, t, n2) 2

E | FS |= 't}, and T

0
= {t 2 T | FS |= 't}.

As it stands, projecting a Feature Net and deriving its reachability graph is not
necessarily the same as deriving the variable reachability graph of the Feature Net and
projecting it with the same feature selection. Let G⇡!r be the reachability graph from
the first approach, and Gr!⇡ the one from the second approach. These only differ in
the set of unreachable nodes and transitions: Gr!⇡ has only a minimal set of nodes and
transitions, while G⇡!r can have some nodes and transitions that are not connected

Feature Nets 11

to the initial node. These unconnected elements stem from the way the reachability
graph is projected, that is, by discarding unused transitions.

However, Gr!⇡ and G⇡!r are behaviourally equivalent, that is, the set of possible
traces from the initial node is the same in both graphs. This result holds for both
variants of variable reachability graphs. For the purpose of model checking, for example,
this is enough. We do not show this equivalence between Gr!⇡ and G⇡!r, which
follows a reasoning similar to Theorem 1.

Model checking Feature Nets using Petri nets. We identify three different approaches
for model checking a Feature Net N : (1) a naive approach based on Petri nets, (2)
an optimised one based on variable reachability graphs, and (3) a more relaxed one
based on modal transition systems. The former approach consists of encoding N into a
traditional Petri net, where a variety of tools and techniques for their analysis exist [30].
This encoding is discussed in more detail in Section 7, and a concrete approach for
analysing Petri nets is discuss in Section 8.1. The basic idea of this encoding is that
each feature can be specified as a Petri net with two places denoting the presence of
the feature, and connected to the Petri net describing the system behaviour. The main
disadvantage of this approach is the need to create a potentially large number of Petri
nets—one for each selection of features—and the potential need to expand the number
of transitions, which will be discussed when presenting the encoding into Petri nets.
The combined Petri net is in turn used for checking the desirable properties.

Model checking Feature Nets using featured transition systems. The second approach
relies on analysing relaxed variable reachability graphs. A relaxed variable reachability
graph can be built using the following simple algorithm. Denote the initial marking
as the first node of the graph. Add nodes corresponding to all markings reachable in
one step from the initial marking (by firing any one transition, ignoring the satisfaction
condition). Include edges corresponding to the fired transitions and annotate them with
the respective application conditions. Repeat above steps for the added nodes until no
new markings are found. The resulting graph can be seen as a featured transition
system (FTS) [10], that is, a labelled transition system whose transitions are labelled
by application conditions. This can be checked using dedicated FTS model checkers
such as SNIP/ProVeLines [8]. The problem of producing and analysing a reachability
graph from a Feature Net, seen as an FTS, is addressed with the mCRL2 toolset [12]
in Section 8.2.

Model checking Feature Nets using modal transition systems. The third approach to
model check properties of feature nets uses modal transition systems (MTS). An MTS
can be seen as a special kind of labelled transition system where edges are marked
either as required or as optional. In the context of software product lines, MTS have
been used to represent families of systems, one for each choice of optional edges [18,
16]. In our case, MTS can be used to model check Feature Nets by generating special
reachability graphs (Definition 9) where edges are marked as required or optional, and
use MTS tools to infer properties over it. For example, one can generate an MTS from
a Feature Net and a given set PL of desired feature selections; in our running example,
PL = {{Co↵ee}, {Co↵ee,Milk}}. The MTS is obtained by calculating the reachabil-
ity graph of the Feature Net without the application conditions, and by annotating
each transition t of the Feature Net as required if 8FS 2 PL · FS |= 't, as optional
if 9FS 2 PL · FS |= 't, and discarded otherwise. When compared to the previous

12 Radu Muschevici et al.

two approaches, MTS convey less information because they abstract away the valid
combinations of optional edges. Consequently, verifying that a path exists in the MTS
does not guarantee the existence of the same path for the reachability graph projected
to some feature selection. Interesting properties than can still be verified using MTS
include the guarantees that certain sequences of actions are possible in all considered
feature selections, or the unreachability of certain markings.

5 Dynamic Feature Nets

Dynamic Software Product Lines (DSPL) is an area of research concerned with run-
time variability of systems [23]. DSPL is an umbrella concept that addresses dynamic
reconfiguration of products (i.e. features are added and removed at runtime), but also
dynamic evolution of the product line itself (typically referred to as “meta-variability”).
Pushing the binding time of features to runtime is often motivated by a changeable op-
erational context, to which a product has to adapt in order to provide context-relevant
services or meet quality requirements.

To accommodate modelling the kind of dynamic feature reconfiguration that is
characteristic of DSPLs, we introduce Dynamic Feature Nets (DFN). DFN associate
simple update expressions to transitions. Upon firing of a transition, updates affect the
feature selection in effect.

5.1 Dynamic Feature Reconfiguration Example

Assuming that a product is composed from a static selection of features is sometimes
too restrictive. As an example, we can think of a modular appliance, some of whose
features can be enabled/disabled temporarily based on the connected hardware mod-
ules. For example, a coffee machine using fresh milk instead of milk powder allows the
removal of the milk reservoir, in order to store it in the fridge. That change in the
hardware configuration may entail a change in the software configuration. Modelling
the presence/absence behaviour of the Milk feature may entail a significant modelling
effort.

off on

connect

¬Milk

Milk on

disconnect

Milk

Milk off

Fig. 5: DFN modelling the ability to connect/disconnect a feature at runtime.

In our example, switching the Milk feature on and off can be modelled by the
DFN in Fig. 5, as an independent addition to the model in Fig. 2. Associated to the
disconnect transition is the update expression “Milk off”. By firing the disconnect

Feature Nets 13

wait ready

coffee

refillable

n

coffee

full

brew coffee

Co↵ee

noop

serve

Co↵ee

noop

refill coffee

Co↵ee

noop

m

milk

full

milk

refillable

milk

ready

add milk

Co↵ee^Milk

noop

refill milk

Co↵ee^Milk

noop

serve coffee w/milk

Co↵ee^Milk

noop

off on

connect

¬Milk

Milk on

disconnect

Milk

Milk off

Fig. 6: DFN (initial state) of a dynamically reconfigurable product line. Whenever
transition disconnect fires, feature Milk is switched off, disabling all transitions that
are conditioned on Milk . It is enabled again by firing connect.

transition, the current feature selection is updated, dropping the Milk feature. This
action globally disables all transitions whose application condition depends on the
Milk feature (that is, add milk, refill milk and serve coffee w/milk in Fig. 2).
Conversely, firing the connect transition re-enables all transitions conditioned on the
Milk feature.

The feature reconfiguration model can remain disconnected from the “functional”
model if the user interaction of removing/reconnecting the Milk feature can occur
independently of the state of the coffee machine. Alternatively, we can assume that
the reconfiguration of features depends on the functional model. Fig. 6 shows a model
where removing/reconnecting the milk reservoir is only allowed when the machine is
in a waiting state, prohibiting, for example, its removal when the machine is in the
process of brewing coffee.

5.2 Definition

We extend the definition of Feature Nets to capture the dynamic reconfiguration of
products, resulting in a more general Petri net model. In our approach we associate to
each transition an update expression that describes how the feature selection evolves
after the transition. The resulting model is called Dynamic Feature Nets (DFN). DFN
extend Feature Nets by adding a variable feature selection to the state of the Petri
net, and associating application conditions and update expressions over the feature set

14 Radu Muschevici et al.

to the transitions. This extension enables a more concise description of SPLs, without
adding expressive power with respect to Petri nets (see Section 7 for a justification of
this claim). We now define update expressions before formalising DFN.

Definition 21 (Update) An update is defined by the following grammar:

u ::= noop | a on | a off | u;u

where a 2 F and F is a set of features. We write UF to denote the set of all updates
over F .

Given a feature selection FS 2 F , an update expression modifies FS according to
the following rules:

FS noop���! FS

FS a on���! FS [{a}

FS a off���! FS \ {a}

FS u0��! FS 0 FS 0 u1��! FS 00

FS
u0;u1����! FS 00

Definition 22 (Dynamic Feature Net) A DFN is a tuple N = (S, T,R,M0,FS 0, F,

f, u), where (S, T,R,M0, F, f) is an FN, FS 0 ✓ F is the initial feature selection and
u is a function T ! UF , associating each transition with an update from UF .

The initial marking M0 together with the initial feature selection FS 0 define the
initial state of the DFN. We write ut to denote the update expression u(t) associated
with a transition t.

5.3 Semantics

Definition 23 (DFN transition occurrence) Given a Dynamic Feature Net N =

(S, T,R,M0,FS 0, F, f, u), a transition t 2 T occurs, leading from a state (Mi,FS i)

to a state (Mi+1,FS i+1), denoted (Mi,FS i)
t�! (Mi+1,FS i+1), iff the following four

conditions are met:

Mi � •
t (enabling)

Mi+1 = (Mi � •
t) + t

• (computing)
FS i |= 't (satisfaction)

FS i
ut��! FS i+1 (update)

Definition 24 (DFN trace) Given a DFN N = (S, T,R,M0,FS 0, F, f, u), the be-
haviour the net exhibits by assuming a sequence of states (M0,FS 0) . . . (Mn,FS n),
where each change of state is triggered by a transition occurrence (Mi,FS i)

ti�!
(Mi+1,FS i+1), is called a trace. A trace is written (M0,FS 0)

t0�! (M1,FS 1)
t1�!

· · ·
tn�1���! (Mn,FS n).

If we consider all possible traces, we obtain the behaviour of the FN.

Feature Nets 15

Definition 25 (DFN Behaviour) Given a DFN N = (S, T,R,M0,FS 0, F, f, u), we
define Beh(N) to be the set of all traces starting with the initial state (M0,FS 0).

For example, the following trace is an element of the behaviour of the DFN illus-
trated in Fig. 6 (tuples represent markings and the sets below are feature selections).

off

on

wait

ready

m. ready

c. full

c. refillable

m. full

m. refillable

0

BBBBBBBBBBBB@

0

1

1

0

0

n

0

m

0

1

CCCCCCCCCCCCA

{Co↵ee,Milk}

disconnect��������!

0

BBBBBBBBBBBB@

1

0

1

0

0

n

0

m

0

1

CCCCCCCCCCCCA

{Co↵ee}

connect������!

0

BBBBBBBBBBBB@

0

1

1

0

0

n

0

m

0

1

CCCCCCCCCCCCA

{Co↵ee,Milk}

5.4 Reachability Analysis

DFN incorporate a feature selection that can change dynamically when transitions fire.
Thus, when building the reachability graph of a DFN, each node (which represents a
state of the DFN) will also have a feature selection associated with it.

Definition 26 (Dynamic reachability graph) Let the dynamically reachable set of
a Dynamic Feature Net N = (S, T,R,M0,FS 0, F, f, u) be the smallest set Reach(N)

such that (M0,FS 0) 2 Reach(N), and (Mi,FS i) 2 Reach(N) if (M0,FS 0)
t0�! · · · ti�!

(Mi,FS i). The dynamic reachability graph of N is the tuple G = (Reach(N), E, T,M0,

FS 0, F, f) where Reach(N) are the nodes of the graph, E ✓ Reach(N)⇥T ⇥Reach(N)

are the graph’s edges, T is the set of transitions of N , (M0,FS 0) is the initial state of
N , F is the set of features of N , and f : E ! �F is a function associating each edge
with an application condition over F .

0 1
{Co↵ee,Milk}

1 0
{Co↵ee}

Milk

disconnect

¬Milk

connect

Fig. 7: Dynamic reachability graph of the DFN depicted in Fig. 5.

For example, the DFN from Fig. 5 has the dynamic reachability graph depicted in
Fig. 7. To model check DFNs one can use a traditional model checker, such as SPIN [24]
or mCRL2 [12]. This is explained in detail in the end of this paper (Section 8.3), where
the reachability graph of the DNF from Fig. 6 is calculated and analysed. In a nutshell,
states can be encoded as tuples of integers, each representing a marking together with

16 Radu Muschevici et al.

the feature selection, and labels as transitions. Note that the approach based on variable
reachability graphs (c.f. Section 4.3) cannot be used for Dynamic Feature Nets. Even
though a dynamic reachability graph can be seen as a featured transition system [10]
by discarding the information regarding feature selection updates, the semantics would
be different since the feature selections cannot be modified during the execution of the
system.

6 Arc-Labelled Feature Nets

A Feature Net (FN) is a Petri net variant used to model the behaviour of an entire
software product line. Arc-labelled Feature Nets are a FN variant that have application
conditions attached to their arcs. As defined in Section 4, an application condition is
a propositional logical formula over a set of features. For arc-labelled Feature Nets, it
describes the feature combinations to which the arc applies. If the application condition
is false for a given feature selection, it is as if the arc were not present. Arc-labelled Fea-
ture Nets allow a technique for constructing larger Feature Nets from smaller ones to
model the addition of new features to an SPL. Along with presenting the composition
technique, we provide correctness criteria for ensuring that the resulting composition
preserves the behaviour of the original model(s). Arc-labelled Feature Nets are as ex-
pressive as transition-labelled FNs, as will be shown in Section 7. The main difference
is that they allow a finer grained association with features, which often results in more
concise models.

Throughout this section, whenever the term Feature Net is used, it refers to the arc-
labelled variant. We define arc-labelled Feature Nets and their behaviour by adapting
the definition of Feature Nets described in Section 4, where application conditions
apply to transitions instead of arcs.

Definition 27 (Feature Net) A Feature Net is a tuple N = (S, T,R,M0, F, f),
where S and T are two disjoint finite sets, R is a relation on S [T (the flow relation)
such that R \ (S ⇥ S) = R \ (T ⇥ T) = ;, and M0 is a multiset over S, called the
initial marking. The elements of S are called places and the elements of T are called
transitions. Places and transitions are called nodes. The elements of R are called arcs.
Finally, F is set of features and f : R ! �F is a function associating each arc with
an application condition from �F . Note that f is different from the function f that
associates transitions with application conditions in transition-labelled Feature Nets
(Definition 12).

Without f and F , a Feature Net is just a Petri net. Sometimes we omit the initial
marking M0. The function f determines a node’s pre- and post-set, defined below.

Definition 28 (Marking of a Feature Net) A marking M of an FN (S, T,R, F, f)

is a multiset over S. A place s 2 S is marked iff M(s) > 0.

The pre- and post-sets of arc-labelled FNs depend on the feature selection FS ,
which determines whether an arc is present or not. The following definition takes this
into account. Note that this is different from transition-labelled Feature Nets, where
arcs are fixed.

Definition 29 (Pre-sets and post-sets) Given a node x of a Feature Net and a
feature selection FS, the set (FS)

x = {y | (y, x) 2 R,FS |= f(y, x)} is the pre-set of x
and the set x

(FS)
= {y | (x, y) 2 R,FS |= f(x, y)} is the post-set of x.

Feature Nets 17

Definition 30 (Enabling) Given a feature selection FS , a marking M enables a
transition t 2 T if it marks every place in (FS)

t, that is, if M � (FS)
t.

We now define the behaviour of Feature Nets for a given feature selection.

Definition 31 (Transition occurrence) Let N = (S, T,R,M0, F, f) be a Feature
Net and FS ✓ F a feature selection. A transition t 2 T occurs, leading from a state
with marking Mi to a state with marking Mi+1, denoted Mi

t,FS���! Mi+1, iff the
following two conditions are met:

Mi � (FS)
t (enabling)

Mi+1 = (Mi � (FS)
t) + t

(FS) (computing)

The transition rule for FN is used to define traces that describe the FN’s behaviour.
We now define the semantics of a Feature Net by projecting it onto a Petri net for a
given feature selection.

Definition 32 (Projection) Given a Feature Net N = (S, T,R,M0, F, f) and a fea-
ture selection FS ✓ F , the projection of N onto FS , denoted N # FS , is a Petri net
(S, T,R

0
,M0), with R

0
= {(x, y) | (x, y) 2 R,FS |= f(x, y)}.

One projects N onto a feature selection FS by evaluating all application conditions
f(x, y) with respect to FS for all arcs (x, y) 2 R. If FS does not satisfy f(x, y), then
arc (x, y) is removed from the Petri net.

The behaviour of a Feature Net is the union of the behaviour of the Petri nets
obtained by projecting all possible feature selections. The behaviour of a Petri net
N = (S, T,R,M0) is given by the set of all of its traces [20], written Beh(N) =

{M0
t1�! · · · ts�! Mn | Mi ✓ S, i 2 1..n,Mi�1

ti�! Mi}, and does not include application
conditions nor feature selections.

Definition 33 (FN Behaviour) Given an FN N = (S, T,R,M0, F, f), we define
Beh(N) as follows:

Beh(N) =

[

FS ✓F

Beh(N #FS).

6.1 Modular Modelling

For a modelling formalism to be useful in practice, it needs to facilitate modular devel-
opment techniques. This is especially important for modelling software product lines: a
single SPL model combines the behaviour of a set of different systems, which are often
too complex to develop simultaneously.

Modular approaches include top-down techniques, where initially an abstract model
is sketched and more details are added incrementally, and bottom-up approaches, where
subsystems are modelled separately and later plugged together to a global model.
Petri nets support both approaches [20]. In the following we propose a bottom-up
composition technique for Feature Nets. It is based on the idea of modelling features
of the system individually and then combining them to obtain a model of the entire
SPL. Our approach starts by building a model of the core system that is the behaviour
which is common to all products of the SPL. Optional features are modelled as separate

18 Radu Muschevici et al.

nets, which also specify how they interact with the core through an interface. Core and
additional features are then composed stepwise, by incrementally applying each feature
to the core. We show how this technique can be applied to modularly specify a coffee
machine product line from the three features Co↵ee, Payment and Milk .

Feature Net Composition

We devise a modular modelling approach in which features (or parts thereof) are first
expressed as separate FNs. A feature’s interaction with the rest of the system (the
core) is modelled using an interface. Features are modelled separately in such a way
that they can be attached to the core, in order to incrementally build a larger model.
The interface simulates the behaviour of the core that the features are designed to
be plugged into. A feature modelled using this technique can be seen as a partially
specified model of the entire SPL, where the feature’s behaviour is fully specified,
whereas everything else is underspecified. Composition then amounts to connecting
the interface to the core to obtain a specification of the combined system. We call a
feature net with such an interface a delta feature net, as it provides a behavioural delta
to the core (i.e., it adds or removes behaviour).

The three features of our example coffee machine are modelled as separate FNs
(Fig. 8). Apart from when a feature’s behaviour is self-contained (such as the Co↵ee net
in Fig. 8a) it will typically interact with other features that are part of the larger system.
To faithfully model such interactions we include an interface. Interfaces (highlighted in
orange in Fig. 8) abstract the behaviour of the core. The interface will also be used to
show that the individual net exposes the same behaviour as it does when it is part of
the combined system. For example, the model of Milk in Fig. 8b reflects the fact that
adding milk depends on a state of the system in which a cup of fresh coffee is available.
The larger system is represented abstractly by the highlighted interface, which models
the availability of coffee in the place ready; a token in this place would denote a
state in which a freshly brewed cup of coffee is available. Similarly, Fig. 8c models
the fact that after a payment has been accepted, the overall system is able to brew

coffee, and after serving the coffee, the system goes back to an unpaid state. Note
that interfaces are in general not limited to the composition with a particular core, but
can be attached to any core that they are applicable to.

Constructing a model of the whole SPL is done by stepwise applying the delta
nets of each feature to a core model. The intuition behind delta net application is that
each interface is replaced with a more complex Feature Net. Nodes (transitions and
places) are identified by their names. Therefore, nodes with the same name that appear
in different nets are considered the same and serve as reference when replacing the
interface with the core net. In our example, the first step could be to refine Payment ’s
interface by replacing it with the Feature Net for Co↵ee. In a second step, the feature
Milk is refined by replacing its interface with the net obtained in the previous step.

We now formally introduce the application of a delta net to a core net.

Definition 34 (Delta Feature Net) A delta Feature Net N is a FN with a desig-
nated interface (SI , TI), denoted N = (S, T,R, F, f, SI , TI), where SI ✓ S and TI ✓ T .

Delta Feature Nets specify the behaviour of features designed to be added to a
larger system. A sequence of delta FN is combined with a stand-alone FN, the core,
by sequentially applying each delta net to the core. Delta nets include an interface,

Feature Nets 19

wait ready

coffee

refillable

n

coffee

full

brew coffee

C

o

↵

e

e

C

o

↵

e

e

C

o

↵

e

e

C

o

↵

e

e

serve

C

o

↵

e

e

C

o

↵

e

e

refill coffee

C

o

↵

e

e

C

o

↵

e

e

(a) Co↵ee feature (core)

i-s1 ready

i-t1

i-t2

m

milk

full

milk

refillable

add milk

M

i

l

k

M

i

l

k

M

i

l

k

M

i

l

k

refill milk

M

i

l

k

M

i

l

k

(b) Milk feature

unpaid hold

paid

insert coin

P

a

y

m

e

n

t

P

a

y

m

e

n

t

reject coin

P

a

y

m

e

n

t

P

a

y

m

e

n

t

accept coin

P

a

y

m

e

n

t

P

a

y

m

e

n

t

i-s2i-s1

serve

P

a

y

m

e

n

t

brew coffee

P

a

y

m

e

n

t

(c) Payment feature

Fig. 8: Individual Feature Nets modelling the features Co↵ee, Milk and Payment of
a product line of coffee machines. Interfaces are highlighted in orange. Arcs without
labels have the application condition true.

which models interactions with the core. Such interactions are modelled by transitions
or places common to both core and delta net.

Definition 35 (Delta Net Application) Let N = (S, T,R, F, f) be a Feature Net
and D = (Sd, Td, Rd, Fd, fd, SI , TI) a delta Feature Net with S \ Sd 6= ;. The applica-
tion of D to N results in a net N

0
= (S

0
, T

0
, R

0
, F

0
, f

0
), written as N �D, where

S

0
= (Sd \ SI) [S

T

0
= (Td \ TI) [T

R

0
= {(s, t) 2 (R [Rd) | s 2 S

0
, t 2 T

0}
[{(t, s) 2 (R [Rd) | t 2 T

0
, s 2 S

0}
F

0
= F [Fd

f

0
= f ↵ fd

20 Radu Muschevici et al.

unpaid hold

paid

insert coin

P

a

y

m

e

n

t

P

a

y

m

e

n

t

reject coin

P

a

y

m

e

n

t

P

a

y

m

e

n

t

accept coin

P

a

y

m

e

n

t

P

a

y

m

e

n

t

readywait

coffee

refillable

n

coffee

full

brew coffee

C

o

↵

e

e

C

o

↵

e

e

C

o

↵

e

e

C

o

↵

e

e

P

a

y

m

e

n

t

serve

C

o

↵

e

e

C

o

↵

e

e

P

a

y

m

e

n

t

refill coffee

C

o

↵

e

e

C

o

↵

e

e

Fig. 9: A software product line over feature set {Co↵ee,Payment} obtained by applying
the delta net Payment (Fig. 8c) to the core net modelling Co↵ee (Fig. 8a).

and

(g ↵ h)(arc) =

8
<

:

g(arc) if arc 2 dom(g) ^ arc /2 dom(h)

h(arc) if arc /2 dom(g) ^ arc 2 dom(h)

g(arc) ^ h(arc) if arc 2 dom(g) \ dom(h).

When applying a delta net to a core, the interface is dropped and the two nets are
“fused” along their common nodes. The arcs that previously connected the delta net
interface now connect the core. The applicability of a delta net is limited to certain
cores. Let SB and TB represent the border of the interface, that is, SB = {s 2 SI | 9t 2
Td \ TI : (s, t) 2 R

0} and TB = {t 2 TI | 9s 2 Sd \ SI : (t, s) 2 R

0}. A delta net is
applicable to a core net if the border of the interface is preserved, that is, if S\Sd = SB

and T \ Td = TB .
We show how delta net application is used to build a model of the example coffee

machines SPL. Starting with the separate sub-models in Fig. 8, delta nets are applied
stepwise to a growing core. First, a model with the two features Co↵ee and Payment

is composed by applying the delta net from Fig. 8c to the core shown in Fig. 8a. These
nets have the two transitions serve and brew coffee in common. The result after
applying the delta Feature Net is the new core Feature Net shown in Fig. 9. In a second
step, we add the Milk behaviour by applying the Feature Net in Fig. 8b to the core
obtained in the previous step. These two nets have the place ready in common. The
result after delta net application is the model shown in Fig. 10. Note that the order in
which we apply the two delta nets does not matter in this case, because neither feature
(Milk or Payment) depends on the other. In general, features can depend on other
features. This would be reflected by the design of their interfaces, effectively restricting
the applicability and ensuring that the delta nets can only be applied in a valid order.
As a consequence, delta net application is not commutative.

6.2 Behaviour Preservation

When is the application of a delta net D to a core net N correct? We consider this
application correct if the traces of N and D are in some way the same as the traces
of N �D, introduced in Definition 35, after projecting onto the transitions of N and
D. However, there are various ways to compare these traces. We can consider only the

Feature Nets 21

unpaid hold

paid

insert coin

P

a

y

m

e

n

t

P

a

y

m

e

n

t

reject coin

P

a

y

m

e

n

t

P

a

y

m

e

n

t

accept coin

P

a

y

m

e

n

t

P

a

y

m

e

n

t

readywait

coffee

refillable

n

coffee

full

brew coffee

C

o

↵

e

e

C

o

↵

e

e

C

o

↵

e

e

C

o

↵

e

e

P

a

y

m

e

n

t

serve

C

o

↵

e

e

C

o

↵

e

e

P

a

y

m

e

n

t

refill coffee

C

o

↵

e

e

C

o

↵

e

e

milk

refillable

m

milk

full

add milk

M

i

l

k

M

i

l

k

M

i

l

k

M

i

l

k

refill milk

M

i

l

k

M

i

l

k

Fig. 10: FN model of an SPL over the feature set {Co↵ee,Payment ,Milk} obtained by
sequential application of the delta nets for the features Payment (Fig. 8c) and Milk

(Fig. 8b).

features used by the original nets (FN or FD) or the features used by the combined net
(FN [FD). We can consider the core net N or the delta net D. Finally, we can consider
the inclusion of traces of the original net in the combined net or also the inclusion of
traces of the combined net in the original net. The three dimensions are summarised
as:

– Original vs. combined features. When comparing the behaviour of one of the
original nets with the combined net, we can either consider the combined features
in the final net or just the features in one of the original nets.

– Core vs. delta. We can evaluate the correctness of the core or delta net behaviour,
always in comparison to the combined net’s behaviour.

– Liveness, safety, or both. Preserving liveness means that a net cannot inhibit
behaviour in the other net, while preserving safety means that a net cannot intro-
duce new behaviour to the other net. For example, we say a delta application is
safe with respect to the core net N if the traces of the combined net are included
in the traces of N , when considering the common transitions.

By choosing different parameters along these dimensions we obtain different notions
of correctness. We formulate a parametrised notion of correctness for the application
of delta net D to a core net N as follows:

8FS ✓ ⇥F : Beh(⇥N #FS) ⇥R Beh((N �D)#FS) (param. correctness)

⇥F 2{FN , FD, FN [FD}
⇥N 2{N,D}
⇥R 2{✓

Ts

,◆
Ts

,=

Ts

}

22 Radu Muschevici et al.

⇥F can be either the full set of features, or the features of either the net N or D;
⇥N can be either the core or the delta net; and ⇥R is a superset, set inclusion or
set equivalence relation between the two sets of traces, with respect to a given set of
relevant transitions Ts. This set of transitions will be explained in Section 6.3 and made
concrete in Sections 6.4, 6.5, and 6.6. When ⇥R is a superset relation, it represents
safety, since no new traces can be introduced by combining the two nets. On the other
hand, a subset relation represents liveness, since all traces in the original net are still
valid traces in the combined net. When we have both safety and liveness assurances,
we say that the behaviour is preserved, and instantiate ⇥R to be the equality of the
traces with respect to the common transitions.

Not all combinations of these dimensions are desirable in all cases. For example,
sometimes we might want to inhibit or extend the behaviour of a core net with respect
to the combined set of features, breaking the liveness or safety criteria. However, it
seems desirable to preserve this behaviour with respect to the features of the core net.
In fact, it is open to debate which combination of these dimensions are ideal. In this
paper, we provide sufficient conditions to guarantee:

1. Preservation of the behaviour of N with respect to the original features (⇥F = FN ;
⇥N = N ; ⇥R = ‘=

Ts

’)
2. Preservation of the behaviour of D with respect to the combined features (⇥F =

FN [FD; ⇥N = D; ⇥R = ‘=
Ts

’)
3. Safety of the behaviour of N with respect to the combined features (⇥F = FN[FD;

⇥N = N ; ⇥R = ‘◆
Ts

’)

6.3 Mathematical Preliminaries

We defined liveness and safety as inclusion of traces with respect to a relevant set of
traces. We formalise this concept below.

Definition 36 (Behaviour inclusion ✓
Ts

) Let Ni = (Si, Ti, Ri) be a pair of Petri
nets, for i 2 1..2, and Ts be a set of transitions. We say that the behaviour of N1 is
included by the behaviour of N2 with respect to Ts, written Beh(N1) ✓

Ts

Beh(N2),
if Beh(N1) � Ts ✓ Beh(N2) � Ts, where Beh(N) � Ts = {tr � Ts | tr 2 Beh(N)} and:

M � Ts = " (M

t�! tr) � Ts =

⇢
t · (tr � Ts) if t 2 Ts

tr � Ts otherwise.

Similarly, we write ◆
Ts

and =

Ts

to represent superset inclusion and equality for the
transitions in Ts.

Behaviour inclusion between two nets N1 and N2 is defined by comparing the
transition sequences that both nets are able to perform. The transition sequences of
both nets are restricted to transitions from a given set Ts. If the transition sequences
of N1 are a subset of the transition sequences of N2, we say that the behaviour of N1

is included in the behaviour of N2.
We now define weak bisimulation between two Feature Nets, which we will use to

relate the interface of a delta net with the net to which the delta is applied to, based
on the notion of bisimulation described by Schnoebelen and Sidorova [36].

Definition 37 (Weak bisimulation) Let Ni = (Si, Ti, Ri, M0i, Fi, fi) be two Fea-
ture Nets, for i 2 1..2, Mi the set of markings of Ni, and B ✓ (M1 ⇥M2)[(T1 ⇥T2)

Feature Nets 23

a relation over markings and transitions. Recall also the notion of occurrence of transi-
tions introduced in Definition 31. In the following we write t 2 B to denote that t is in
the domain or codomain of B. B is a weak bisimulation if, for any feature selection FS :

1. M01 B M02

2. 8(M1,M2) 2 B, if M1
t1,FS����! M

0
1 and t1 /2 B, then M

0
1 B M2;

3. 8(M1,M2) 2 B, if M1
t1,FS����! M

0
1 and t1 2 B, then there exists t2 2 T2 and M

0
2

such that M2
t2,FS����!B M

0
2, M 0

1 B M

0
2, and t1 B t2;

4. conditions (2) and (3) also hold for B�1;

where M

t,FS���!B M

0 denotes that there are n transitions t1 . . . tn such that
M

t1,FS����! · · · tn,FS����! Mn
t,FS���! M

0 and 8j 2 1..n : tj /2 B.
If a weak bisimulation exists between N1 and N2 we say that they are weakly bisimilar,
written N1 ⇡ N2.

Example Let C be the Feature Net for the Co↵ee feature (Fig. 8a), and P the delta
net dealing with Payment (Fig. 8c). Let the interface of P be seen as a Feature Net
PI . It holds that C ⇡ PI . Furthermore, there exists a weak bisimulation B that relates
the transitions with the same name of the two nets, namely serve and brew coffee.
More specifically, the relation B below is a bisimulation, where we write MC and MPI

to denote all the markings of C and PI , respectively.

{(M,M

0
) | M 2 MC ,M

0 2 MPI
,M(wait) = 1,M

0
(i-s1) = 1} [

{(M,M

0
) | M 2 MC ,M

0 2 MPI
,M(wait) = 0,M

0
(i-s1) = 0} [

{(serve, serve), (brew coffee,brew coffee)}

6.4 Preservation of the core behaviour for the original features

Our first criterion compares the core net with the combined net, considering only the
features originally present in the core net. If we require the behaviour of the core net
to be preserved in the combined net, then their traces must coincide with respect to
the transitions in the core net. We formalise this criterion as follows.

Criterion 1 (preservation/core/original) Let N = (S, T,R, F,M0, f) be a core
net and D a delta net. We say that N�D preserves the behaviour of N for the features
in F iff

8FS ✓ F : Beh(N #FS) =T Beh(N �D#FS).

To verify that a delta net application obeys the above correctness criteria, it is
sufficient (although not necessary) to verify the following condition. Check that the
arcs between the interface and the non-interface nodes of D require at least one ‘new’
feature to be present. By new feature we mean a feature that is not in F . This syntactic
check ensures that, when considering only the features from the core net, the arcs
connecting it to the delta net will never be active.

Theorem 2 Let D = (Sd, Td, Rd,M0d, Fd, fd, SI , TI) be a delta net, N = (S, T,

R,M0, F, f) a Feature Net, and RI ✓ Rd be the set of arcs connecting interface nodes

24 Radu Muschevici et al.

(SI [TI) to non-interface nodes. The behaviour of N is preserved by N � D for the
features in F (Criterion 1) if:

8(x, y) 2 RI : 8FS 2 Fd [F : FS |= f(x, y) 7! FS \ (Fd\F) 6= ;. (1)

Proof Assume that Equation (1) holds for N � D = N

0. We show that the core be-
haviour is preserved, i.e., that 8FS ✓ F · Beh(N # FS) =T Beh(N

0 # FS). Observe
that, for every FS ✓ F , FS\(Fd\F) = ;. Hence, by assuming Equation (1) we conclude
that for every arc (x, y) 2 RI , FS ◆◆|= f(x, y). Therefore the traces t 2 Beh(N # FS)
coincide with the traces of Beh(N 0 #FS) with respect to the transitions of N . ut

In both our examples of delta application, that is, adding payment to a coffee
machine and adding milk to the resulting net, the condition in Equation (1) holds. The
intuition is that, for example, when the Payment feature is not available, the Co↵ee

Feature Net is detached from the Payment Feature Net in the combined net. Hence its
behaviour is not affected by the Payment net and is preserved.

shout

A A

(a) Core net N

twist

B B

shout

B

(b) Delta net D

shout

A

B

A

twist

B B

(c) N �D

Fig. 11: Example of an FN composition that is correct w.r.t. Criterion 1.

Example The following simple example illustrates this criterion. Fig. 11 shows (a) a
core net N with feature set {A}, (b) a delta net D with feature set {B} and (c) the
combined net N�D obtained by applying the delta net to the core. Criterion 1 verifies
that the net N �D preserves the behaviour of N for the feature selection {A} by using

Feature Nets 25

Definition 36 to compare the behaviour of the two nets N #{A} and N �D#{A}:

Beh(N #{A}) � {twist} = {twist}
Beh(N �D#{A}) � {twist} = {twist}

=) Beh(N #{A}) ={twist} Beh(N �D#{A}).

To check Criterion 1 we can also use Theorem 2 and simply observe that the
application condition on the arc between the interface and the non-interface nodes of
D requires the (additional) presence of feature B.

6.5 Preservation of the delta behaviour for the combined features

Our second correctness criterion compares the combined net with the delta net, con-
sidering all features in the combined net. In a nutshell, this criterion holds when the
delta net behave the same after its interface is replaced by the core net, hence the com-
parison is based only on the transitions from the delta that are not on the interface.
The formal definition follows.

Criterion 2 (preservation/delta/combined) Let N = (S, T,R, M0, F, f) be a
core net and D = (Sd, Td, Rd,M0d, Fd, fd, SI , TI) a delta net. We say that N � D

preserves the behaviour of D with respect to features from the combined net iff

8FS ✓ F [Fd : Beh(D#FS) =Td\TI
Beh(N �D#FS).

As with the correctness Criterion 1, we present a sufficient condition that guarantees
the preservation of the Criterion 2. However, as opposed to the previous case, this
condition is based on a semantic property of the interface and the core net. More
specifically, this condition relates the interface of the delta net and the core net that
will replace this interface, and imposes extra constraints on their behaviour.

Theorem 3 Let D = (Sd, Td, Rd,M0d, Fd, fd, SI , TI) be a delta net, NI = (SI , TI , RI ,

M0D, Fd, fd) be the interface of D, N = (S, T,R, F, f) a (core) Feature Net, and
RB ✓ Rd denote the arcs connecting interface to non-interface nodes. The behaviour
of D is preserved by N � D (Criterion 2) if N ⇡ NI and there is a specific weak
bisimulation B between N and NI such that:

{(t, t) | t 2 T \ TI} ✓ B, (2)

8s 2 S \ SI , (M,M

0
) 2 B : M(s) = M

0
(s), (3)

8(s, t) 2 RB , s 2 SI , (M,M

0
) 2 B : (M � {s 7! 1}) B (M

0 � {s 7! 1}) (4)

8(t, s) 2 RB , s 2 SI , (M,M

0
) 2 B : (M + {s 7! 1}) B (M

0
+ {s 7! 1}) (5)

For Equation (4) we assume that, if M(s) = M

0
(s) = 0, then subtracting {s 7! 1}

does not change the markings.

Proof Let FS ✓ F [Fd, and B the bisimulation described by Theorem 3. We write
M

N , MD, and M

I to denote the markings M restricted to the places of N , D, and
the interface of D, respectively.

We prove safety, while liveness can be shown in an analogous way, because B is
symmetric. We show by induction the following property. Assume that tr = t1 · · · tn

26 Radu Muschevici et al.

is a trace both in Beh(N �D #FS) � (Td\TI) and in Beh(D #FS) � (Td\TI), ending
in marking M and L respectively, and M

N B L

I . Then for every transition t such
that (tr · t) 2 Beh(N � D # FS) � (Td\TI) ending in marking M

0, it also holds that
(tr · t) 2 Beh(D # FS) � (Td\TI) ending in marking L

0 and M

0N B L

0I . We now
distinguish three scenarios for t.

1. t 2 Td\TI . t can also be performed by D. The possible problem is when places
in (FS)

t or t

(FS) are in the interface. However, the property of B described by
Theorem 3 guarantees that the shared markings between N and the interface of D
have the same tokens for the shared places. The final marking in this case will still
be in the bisimulation, i.e., the final marking L

0 from D will preserve the number of
tokens in the M

0N and L

0I . Hence, by Equation (4) we conclude M

0N B L

0I , and
using induction hypothesis we conclude also that (tr · t) 2 Beh(D#FS) � (TD\TI).

2. t 2 T \ TI . t is a transition from N and from D. Then the bisimulation gives that
t B t and L

I t,FS���! L

0I is a firing from D, where M

N B L

0I . Using the induction
hypothesis we conclude that also (tr · t) 2 Beh(D#FS) � (TD\TI).

3. t 2 T\TI . t is a transition from N but not from D. Since B is a weak bisimulation
and M

N B L

I , then the interface of D can perform zero or more transitions in
TI (hence not visible when restricting to TD\TI) until a transition L

0I such that
M

0N B L

0I . Again, the induction hypothesis allows us to conclude that (tr · t) 2
Beh(D#FS) � (TD\TI).

By (1), (2), and (3), and because the empty trace is always globally safe, we conclude
by induction that any trace in Beh(N�D#FS) is also in Beh(D#FS), when restricted
to Td\TI . ut

Example Recall our running examples. As explained in the end of Section 6.3, there
is a weak bisimulation B between the interface PI of the delta net for payment and
the core net C for coffee. This bisimulation obeys Equation (2) because the shared
transitions are related by B, Equation (3) because the places of C and PI are disjoint,
and Equations (4) and (5) because, in this case, dom(RB) \ SI = ;, i.e., there is no
place in the interface connected to a transition outside the interface. Consequently the
composition CP = C � PI is correct with respect to Criterion 2.

Consider now the application of the delta net for milk M to the previously obtained
core CP . A possible weak bisimulation between CP and the interface of M relates equal
markings of the places ready in CP and ready in M , as well as of the places wait and
i-s1. Note that, in order to use Theorem 3, we need to include markings for any number
of tokens in ready, because of Equations (4) and (5). Furthermore, Equation (2)
trivially holds, and our specific bisimulation relation B (which obeys Equations (2)–
(5)) also captures Equation (3). We conclude that the composition CP � M is also
correct with respect to Criterion 2.

6.6 Safety of the core behaviour for the combined features

Our last correctness criterion compares the core net with the combined net with respect
to all features, as opposed to the first criterion that only considered the features of the
core net. When including the features in the delta net, we consider it safe to inhibit
traces that were initially possible, provided that no new traces are introduced. We
formalise safety using trace inclusion.

Feature Nets 27

Criterion 3 (safety/core/combined) Let N = (S, T,R,M0, F, f) be a core net
and D = (Sd, Td, Rd,M0d, Fd, fd, SI , TI) a delta net. We say that N �D is safe with
respect to N and to the combined features iff

8FS ✓ F [Fd : Beh(N #FS) ◆T Beh(N �D#FS).

We claim that, when applying a delta net connecting only places from the interface
to the rest of the delta, the delta net application is safe with respect to N and the
combined features.

Theorem 4 When applying a delta net D = (Sd, Td, Rd,M0d, Fd, fd, SI , TI) to a core
net N , N �D is safe with respect to N and the combined features if:

8s 2 SI , t 2 Td\TI : (t, s) /2 Rd ^ 8t 2 TI , s 2 Sd\SI : (s, t) /2 Rd. (6)

The theorem is easily justified by the fact that, after the application, the core net
will only be connected to the delta net through arcs pointing from the core to the delta
net. These arcs can only further restrict when core transitions can fire.

Example We exemplify the application of two delta nets in this paper: the Payment
and the Milk nets (Fig. 8c and 8b). The first net obeys Equation (6) in Theorem 4,
hence the correctness Criterion 3 holds. The second delta net has arcs connecting places
from the interface to a non-interface transition, invalidating Equation (6). However, in
this case the safety criterion is nevertheless preserved, because a token that exits the
core when firing add milk is transported back to its origin in the same step.

7 Encoding Feature Nets into Petri Nets

Petri nets are a general modelling formalism, proposed for a wide variety of applica-
tions. Feature Nets and Dynamic Feature Nets leverage the power of Petri nets for
modelling static and dynamic software product lines. They combine the behaviour of
a set of Petri nets in a single model, thus offering conciseness and convenience when
modelling entire software families.

Theorem 1 shows that a transition-labelled Feature Net is equivalent in behaviour to
a set of Petri nets, one for each product defined by the SPL. Arc-labelled Feature Nets
also do not exceed the expressive power of Petri nets. This is indicated by the fact that
an arc-labelled FN can be first encoded as a transition-labelled FN, whose behaviour
can be described using a set of regular Petri nets. We now provide a deeper insight
to this claim, by providing brief guidelines on how to encode arc-labelled, transition-
labelled, and dynamic Feature Nets into Petri nets.

The first encoding from arc-labelled FN to transition-labelled FN replaces each
transition attached to n arcs in R by 2

n transitions, one for each possible combination
of the possible arcs. This is illustrated by an example in Fig. 12.

The second encoding, that is, from transition-labelled Feature Nets to Petri nets
can be achieved by encoding the application condition of FN transition occurrences
(cf. Definition 13) by considering, for each feature f, two places—f on and f off—
marked in mutual exclusion depending on whether the feature is selected or not. We
illustrate this idea in Fig. 13. The place Milk on is associated to the presence of the
feature Milk. When there is a token in this place, the transitions t1 . . .tn are enabled.

28 Radu Muschevici et al.

t

a b

a ^ b

a ^ ¬b

¬a ^ b

¬a ^ ¬b

Fig. 12: Encoding an arc-labelled FN (top) into a transition-labelled FN (bottom).

These n transitions correspond to those transitions of the FN that require the feature
Milk to be present. Hence they are allowed to occur only when there is a token in the
place Milk on. The double arcs between Milk on and each ti guarantee that this
token remains in the same place. The transitions connect and disconnect capture
the selection of features—other variations of encodings are also possible, e.g., where
the feature selections cannot be modified during the execution of the net.

Milk off Milk on

connect milk

disconnect milk

t1

tn

...

Fig. 13: Encoding a feature selection as a Petri net marking.

This approach to encode transition-labelled Feature Nets requires the introduction
of only a pair of transitions and a pair of places for each feature. However, this example
assumes that the original transitions are labelled with simple application conditions
either with a single feature (such as Milk), with a negated feature, or with a conjunction
of (negated) features. In the presence of more complex application conditions these
have to be manipulated. More specifically, they have to be converted into a disjunctive
normal form, which effectively means that all solutions to the condition have to be
found. For example, a transition labelled with a^(b_c) has to be split into 2 transitions:
one with a^b and another with a^c; one for each solution of the condition. The former
will be connected to the place denoting that a is present and to the one denoting that b

Feature Nets 29

is present, and similarly for the latter with respect to a and c. Summarising, encoding
transition-labelled Feature Nets into Petri nets can be a complex operation and can
produce a larger number of transitions when the application conditions are complex.

A similar approach to the encoding from transition-labelled Feature Nets can be
used to convert Dynamic Feature Nets into Petri nets. Additionally, the encoding of Dy-
namic Feature Nets also needs to include the update instructions for features triggered
by transitions. This idea is illustrated by exemplifying the encoding of a transition that
is active when Coffee is selected and that turns the Milk feature on (cf. Fig. 14). The
encoding assumes the initial feature selection to be {Co↵ee}. As before, features are ex-
plicitly represented by pairs of places, denoting their presence or absence. Furthermore,
the application conditions are also represented by double arcs (cf. blue arcs connected
to Coffee on), connecting the transitions to the places denoting the availability of
features. However, the original transition is split into two mutual exclusive transitions:
one assumes that Milk is selected (tM), and the other that Milk is not selected (t¬M).
This assumption is explicit by their pre-sets, which include red arcs from Milk off or
Milk on. Whenever either tM or t¬M is fired, a token is placed in Milk on, and no
token is left in Milk off, hence modelling the update expression Milk on.

s1 s2
t

Co↵ee

Milk on

s1 s2

Coffee onCoffee off Milk off Milk on

T¬M

TM

Fig. 14: Encoding a Dynamic Feature Net (top) into a Petri net (bottom).

These encodings show that, even though Feature Nets offer a more concise way to
describe the systems in an SPL than Petri nets, their expressive power is still equiv-
alent. This also means that analysis techniques for Petri nets still apply to Feature
Nets. However, due to the complexity of the encoding, we have discussed alternative
approaches to model check Feature Nets that do not rely on this encoding (Section 4.3
and 5.4).

DFN provides support for dynamic SPLs, by allowing explicit modelling of feature
reconfiguration as part of the behavioural model. By adding update expressions to
Feature Nets, Dynamic Feature Nets do not gain more expressive power than Petri nets,
but provide a more elegant separation of concerns. This approach offers orthogonality

30 Radu Muschevici et al.

of the feature reconfiguration from the underlying behaviour, but in a way that enables
the reconfiguration to depend upon the underlying behaviour and vice versa.

We present Feature Nets as a novel SPL modelling formalism, but we do not ex-
amine how well this approach fares in practice. If used on a real-world product line,
issues of scalability and the practical applicability of our modular modelling workflow
could arise. These are subject to future research. In addition, many analysis techniques
that exist to determine the behavioural correctness of a Petri net design [30] could be
adopted for Feature Nets.

8 Model Checking Feature Nets

This section provides a concrete example of how to model check properties of (Dynamic)
Feature Nets. Our approach uses the mCRL2 toolset [12] to model check properties
of (1) Petri nets, (2) transition-labelled Feature Nets, and (3) Dynamic Feature Nets.
One can formally specify and analyse system behaviour in mCRL2 using its own spec-
ification language based on process algebra. A Petri net can be encoded as a mCRL2
process that describes its reachability graph (Definition 9); we exemplify this in Sec-
tion 8.1. We incrementally extend the encoding of Petri nets, first by adding application
conditions (Section 8.2), then by adding feature updates (Section 8.3). We show how
to prove properties of these mCRL2 models in Section 8.4.

8.1 Modelling Petri Nets with mCRL2

The reachability graph of the Petri net from Figure 1 is modelled as a mCRL2 process
St(...) defined in Listing 1. The first line declares the actions (transition names), and
the proc clause defines the process St, representing a state of the graph parametrised
on a tuple defining the current marking. These parameters are underlined to highlight
their role as the state of the process (and of the reachability graph produced later). The
definition of the process follows the pattern t1+t2+t3, denoting a choice of 3 possible
transitions. In turn, each transition is defined as (cond)->(action.newState): upon
execution, if the condition cond is met, action is performed, causing the process to
evolve into newState. The new state is built using the auxiliary functions pre and suc,
which calculate the predecessor and successor of a number, respectively. The last line
defines the initial state, where a single token is placed in the places wait (wt), and two
tokens are in coffee full (cf).

act serve,brew,refill;

proc St(wt:Nat,rd:Nat,cf:Nat,ce:Nat) =
(wt>0 && cf>0) -> (brew . St(pre(wt),suc(rd),pre(cf),suc(ce))) +
(rd>0) -> (serve . St(suc(wt),pre(rd),cf,ce)) +
(ce>0) -> (refill . St(wt,rd,suc(cf),pre(ce))) ;

init St(1,0,2,0) ;

Listing 1: Process in mCRL2 that models the reachability graph of Fig. 1.

From this process algebra description, the mCRL2 tools can directly produce a
graph that describes its behaviour: each node represents a reachable instance of the

Feature Nets 31

process St, and labels are the actions of the process algebra serve, brew, or refill.
This graph corresponds exactly to the reachability graph of the Petri net in Figure 1
depicted at the end of Section 3, with 6 states and 9 edges. By substituting the initial
state with (1,0,50,0) (i.e., n = 50) the reachability graph grows to 102 states and
201 edges.

The general encoding from a Petri net into an mCRL process algebra can be done
fully automatic, but we omit here its formalisation because we only aim at exemplifying
how one could verify Feature Nets and Dynamic Feature Nets. Intuitively, a Petri net
can be encoded into a process (of a process algebra) by defining a single process St
parametrised by several arguments, one per each place in the Petri net. This process
is then defined by a sum of choices, one for each transition. Each of these choices is
an implication that checks if the condition is enabled (as in Definition 6), and if so
it performs an action that identifies the transition and behaves as a process St after
updating the parameters based on the transition’s destination arcs.

8.2 Modelling Transition-Labelled Feature Nets with mCRL2

The transition-labelled Feature Net in Figure 2 models a coffee machine with an op-
tional Milk feature. Its reachability graph can be modelled in mCRL2 by extending
Listing 1 with the additional places and transitions, as well as application conditions,
as shown in Listing 2. In this example we introduce a boolean variable milk, set to
true in the second line. For brevity the Co↵ee feature is not explicitly included in the
specification. The conditions guarding the Milk -related transitions are then extended
with the application condition, written with a highlighted background as in milk. The
expressivity of these conditions is that of mCRL2’s language, including the traditional
boolean operators.

map milk:Bool;
eqn milk=true;

act serve,brew,refill,add_milk,serve_w_milk,refill_milk;

proc St(wt:Nat,rd:Nat,cf:Nat,ce:Nat,mr:Nat,mf:Nat,me:Nat) =
(wt>0 && cf>0) -> (brew . St(pre(wt),suc(rd),pre(cf),suc(ce),mr,mf,me)) +
(rd>0) -> (serve . St(suc(wt),pre(rd),cf,ce,mr,mf,me)) +
(ce>0) -> (refill . St(wt,rd,suc(cf),pre(ce),mr,mf,me)) +
(milk && rd>0 && mf>0)

-> (add_milk . St(wt,pre(rd),cf,ce,suc(mr),pre(mf),suc(me))) +
(milk && mr>0) -> (serve_w_milk . St(suc(wt),rd,cf,ce,pre(mr),mf,me)) +
(milk && me>0) -> (refill_milk . St(wt,rd,cf,ce,mr,suc(mf),pre(me))) ;

init St(1,0,2,0,0,2,0) ;

Listing 2: Process in mCRL2 that models the reachability graph of Fig. 2.

A general encoding from a transition-labelled Feature Net can be defined by adapt-
ing the encoding from Petri nets intuitively described in the previous section. More con-
cretely, a Feature Net is encoded as a single process St with a choice for each transition,
as before. However, each of these choices now includes also the application condition
together with the enabling conditions. These application conditions are specified as
logical formulas, using global variables to specify the features values.

32 Radu Muschevici et al.

brew

add _
milk

re
fi

ll

serve

refill_milk serve_w_milk

re
fi

ll

add _
milk

serve

re
fi

ll

serve _
w _
milk

refill

refill_milk

re
fi

ll

refill_milk serve_w_milk

serve _
w _
milk

refill_milk

brew
refill_milk

re
fi

ll

serve

refill_milk

serve

Fig. 15: Reachability graph of the Feature Net from Figure 2 (n = m = 1).

The transition system built from the specification in Listing 2 using the mCRL2 tool
has 27 states and 66 edges. The same process with an initial state where n = m = 1

(i.e., only one refill of coffee and one of milk), produces a smaller transition system
with 12 states and 24 edges, depicted in Figure 15. When increasing this number to
n = m = 50, for example, the number of states and edges go up to 7803 and 25602,
respectively.

This approach for modelling Feature Nets allows the easy configuration of desired
features, and the verification of individual features and feature combinations. This
constitutes a product-based analysis approach. However, it does not provide the means
to automatically verify all valid combinations of features, as an SPL-based analysis
would demand. Recent research towards efficient SPL-based analysis of behavioural
properties modelled with mCRL2 [5] appears promising and we will follow this objective
in future work.

An alternative approach to model checking FNs would be to use the dedicated
tools for featured transition systems [10] instead of mCRL2. This could be achieved
by building the variable reachability graph (as described in Section 4.3), which already
represents an FTS. Note that this is not a trivial construction. A possible way to
generate this variable reachability graph is to use the mCRL2 specification to produce
the transition system by dropping all application conditions, and later to add these
application conditions to the resulting transition system. Hence in our example the
size of the featured transition system is the same as the size of reachability graph when
the milk feature is selected.

8.3 Modelling Dynamic Feature Nets with mCRL2

This subsection further extends the previous example by showing how to model the
Dynamic Feature Net in Figure 6 with mCRL2. The main differences to the previous
example are the possibility to turn the Milk feature on and off during the execution of
the DFN, and the inclusion of new places and transitions that trigger these updates.
Hence the Milk feature is no longer modelled as a static boolean variable, but included
in the state. The process is shown in Listing 3, highlighting both the application con-
ditions and the updates with a darker background.

The resulting reachability graph has 45 states and 111 edges. Figure 16 shows the
smaller reachability graph when n = m = 1 (only one refill of coffee and milk), which

Feature Nets 33

dis
brew

con

br
ew add _

milk

re
fi

ll

ser
ve

re
fi

ll

serve

re
fi
ll
_mi

lk

se
rv
e_
w_
mi
lk

refill

add _
milk

ser
ve

dis

re
fi

ll

serve

con

re
fi

ll

serve _
w _
milk

refill

disrefill_milk

refill

re
fi
ll
_mi

lk

se
rv
e_
w_
mi
lk

serve _
w _
milk

con

refill

disrefill_milk

brew

con
brew

ref
ill

_mi
lk

refill

serve

refill

serve

ref
ill

_mi
lk

serve

serve

Fig. 16: Reachability graph of the Dynamic Feature Net from Fig. 6 (n = m = 1).

has 20 states and 42 edges. When increasing this number to 50, for example, the number
of states and edges go up to 13005 and 41055, respectively.

act serve,brew,refill,serve_w_milk,add_milk,refill_milk,con,dis;

proc St(wt:Nat,rd:Nat,cf:Nat,ce:Nat,mr:Nat,mf:Nat,me:Nat,on:Nat,off:Nat,milk:Bool) =
(wt>0 && cf > 0) ->
(brew . St(pre(wt),suc(rd),pre(cf),suc(ce),mr,mf,me,on,off,milk)) +

(rd>0) ->
(serve . St(suc(wt),pre(rd),cf,ce,mr,mf,me,on,off,milk)) +

(ce>0) ->
(refill . St(wt,rd,suc(cf),pre(ce),mr,mf,me,on,off,milk)) +

(milk && rd>0 && mf>0) ->
(add_milk . St(wt,pre(rd),cf,ce,suc(mr),pre(mf),suc(me),on,off,milk)) +

(milk && mr>0) ->
(serve_w_milk . St(suc(wt),rd,cf,ce,pre(mr),mf,me,on,off,milk)) +

(milk && me>0) ->
(refill_milk . St(wt,rd,cf,ce,mr,suc(mf),pre(me),on,off,milk)) +

(wt>0 && off>0) ->
(con . St(wt,rd,cf,ce,mr,mf,me,suc(on),pre(off),true)) +

(wt>0 && on>0) ->
(dis . St(wt,rd,cf,ce,mr,mf,me,pre(on),suc(off),false)) ;

init St(1,0,2,0,0,2,0,1,0,true) ;

Listing 3: Process in mCRL2 that models the dynamic reachability graph of Fig. 6.

8.4 Verification of Feature Nets

It is possible to analyse the behaviour of any of the processes described above using
mCRL2’s modal logic [12], a first-order modal µ-calculus. Details of the mCRL2 lan-

34 Radu Muschevici et al.

guage and tools can be found online.2 The following properties refer to the Dynamic
Feature Net of Listing 3.

[true*]<true> true (deadlock freedom)
[true*.brew]<(!brew)*.(serve + serve_w_milk)> true (brew must be served)
[true*.dis.(!con)*.add_milk] false (no Milk , no add_milk)
[true*.brew.(!brew && !serve)*]<(!brew)*.serve> true (serve before 2 brews)

All formulas but the last hold. The first formula stipulates that after any sequence of
actions another action can execute. The second formula says that all paths that reach
brew must eventually perform serve or serve_w_milk without performing another
brew action. The third formula says that there can be no path that reaches a dis and
performs a add_milk before con is performed. Finally, the last formula says that a
serve must be performed before executing 2 brews – this is only true when there are
no milk capabilities, otherwise serve_w_milk can be executed instead.

Size of the reachability graph. In general, the reachability graph can be arbitrarily
large. For instance, a Petri net (or Feature Net) with a transition that has a single arc
pointing to a place will have an infinitely large reachability graph: this transition has an
empty pre-set and is able to send an infinite amount of tokens to its connected place.
Furthermore, the reachability problem of Petri nets was shown to be EXPSPACE-
hard [28]. However, if one can either show that the number of tokens in each place is
bounded by a maximum value k, or if one disallows places with more than k tokens
(such nets are known as k-safe), then the maximum number of markings is bounded
to (k + 1)

|P |, where |P | is the number of places. This maximum number of mark-
ings is also the maximum number of states in the reachability graph. In our running
example we have 7 places, and it is possible to show that the number of tokens per
place is bounded by k when the initial process is St(1,0,k,0,0,k,0). Hence, when
k 2 {1, 2, 50} the maximum number of markings is 128, 2187, or around 900 billions.
The actual number of states is much smaller than this upper bound because only a
small number of combinations of markings is actually possible: the places wait, ready,
and milk ready always have exactly 1 token combined; the places coffee full and
coffee refillable can have exactly k tokens combined; and the same holds for the
remaining 2 places. Hence the number of states is 3 ⇤ (k+1) ⇤ (k+1) (which gives the
number of token combinations in each place). Therefore, when k 2 {1, 2, 50}, the num-
ber of markings is 12, 27, and 7803. Observe that the verification of logical properties
in mCRL2 does not require creating the full reachability graph—the processes and the
formulas are analysed until the property is either refuted or proven, which may not
require building the full state space.

9 Related Work

Our research relates to Petri net based formalisms, behavioural specification of software
product lines and dynamic SPL research. We highlight the most relevant works in these
areas.

2 http://www.mcrl2.org

Feature Nets 35

9.1 Petri Net Extensions

Petri net composition and decomposition strategies that preserve some properties of
the initial net(s) have been studied thoroughly [6,37,36,20].

In Open Petri Nets [4], places designated as open represent an interface towards
the environment. Open nets are composed by fusing common open places, and the
composition operation is shown to preserve behaviour with respect to an inverse de-
composition operation. Our Petri net model uses a similar notion of interface, which
includes an abstraction of the net that will be matched during application. We use an
incremental approach using application of deltas instead of a symmetric composition
operation, guided by the intuition that larger systems are built by extending more
fundamental systems. The main focus of open Petri nets is the study of properties in a
category of nets, while we have a more practical focus on the incremental development
of nets.

Inhibitor arc Petri nets [1] can test whether a place is empty by conditioning transi-
tions on the absence of tokens. By modelling individual features as places, the presence
or absence of tokens could represent whether a feature is on or off. An application
condition could be encoded by including feature places in the pre-sets of transitions,
thereby conditioning its firing on the presence or absence of features. Compared to our
proposed approach, this entails a more complex net, with unclear boundaries between
the functional and structural models.

Conditional Petri nets [13] associate a transition to a formal language over tran-
sitions. Extending the classical occurrence rule, a transition is enabled only if the
sequence of transitions that occurred in the past is in that language. An FN could be
encoded as a conditional Petri net by encoding application conditions in a language
over the alphabet of transitions.

In self-modifying Petri nets [38], the flow relation changes dynamically according
to the number of tokens at certain places in the net. A transition is enabled if it can
fire as many tokens as present in the places referenced by its incoming arcs.

Dynamic Petri nets [19] are similar to self-modifying Petri nets, but have an exter-
nal control through which the net’s structure can be changed by adding or removing
arcs between nodes. Certain behaviour can thus be enabled or disabled by integrating
or isolating places and transitions. These Petri net designs, although sporting a mech-
anism of self-modification, are geared towards dynamic changes in throughput, rather
that the discrete activation/deactivation of behaviour offered by DFN.

Using net rewriting systems [29], dynamic changes in the configuration of a Petri
net are described using a rewriting rule that relates places and transitions of the two net
configurations to each other. It is conceivable to model a dynamic SPL as a sequence of
configurations and a set of rewriting rules which relate each configuration to the next.
The DFN approach, however, has the advantage of using a single model, in which each
state clearly references a feature selection.

Compared to the surveyed Petri net formalisms, (D)FN semantics are simpler,
being closer to the application domain of variability modelling: through application
conditions and update expressions they refer directly to the feature model of the SPL.

36 Radu Muschevici et al.

9.2 Behavioural SPL Models

Various formalisms have been adopted for specifying the behaviour of software product
lines, with the aim of providing a basis for analysis and verification of such models. A
survey of formal methods for software product lines has recently been published [7].

UML activity diagrams have been used to model the behaviour of SPL by su-
perimposing several such diagrams in a single model [14]. Attached to the activity
diagram’s elements are “presence expressions,” which are similar to application condi-
tions. Compared to activity diagrams, Petri nets have a stronger formal foundation,
with a larger spectrum of analysis and verification techniques, although, several studies
have expressed the semantics of UML diagram using Petri nets (e.g. [17]).

Gruler et al. extended Milner’s CCS with a product line variant operator that allows
an alternative choice between two processes [22]. The PL-CCS calculus includes infor-
mation about variability: by defining dependencies between features, one can control
the set of valid configurations [21].

Variability is often modelled using transition systems enhanced with product-
related information. Modal transition systems (MTS) [27] allow optional transitions,
lending themselves as a tool for modelling a set of behaviours at once [18]. Generalised
extended MTS [16] introduce cardinality-based variability operators and propose to
use temporal logic formulas to associate related variation points. Asirelli et al. reason
about MTS using propositional deontic logic, which is able to express constraints on
variable behaviour [2,3].

Modal I/O automata [26] are a behavioural formalism for describing the variability
of components based on MTS and I/O automata. Mechanisms for component composi-
tion are provided to support a product line theory. These approaches do not relate, or,
in the case of generalized extended MTS, only partially relate behaviour to elements
of a structural variability model.

Featured transition systems (FTS) [10] are an extension of labeled transition sys-
tems. Similar to Feature Nets, transitions are explicitly labeled with boolean expres-
sions that refer to a feature model, and a feature selection determines the subset of
active transitions. FTS are a purely annotative [25] approach, which requires a pre-
existing understanding of what the system looks like. While FNs also employ anno-
tations to assign features to behaviour, arc-labelled FNs support a compositional ap-
proach, where features are specified in separate modules (delta nets), which are later
combined to model the complete system. FNs can be seen as a higher level modelling
language, whose semantics can be expressed using FTS, as explained in Section 4.3
and reinforced in Section 8.2. To verify properties of FTS, Classen et al. developed
the variability-aware model checker SNIP and have recently proposed symbolic model
checking algorithms [9] to counter the state space explosion caused by the large num-
ber of different behaviours of an SPL. Our model checking approach relies on mCRL2,
and although still in an early development stage, we can take advantage of the recent
progress towards modular, family-level verification of SPLs with mCRL2 [5].

Delta-oriented programming (DOP) [35] is an approach for implementing software
product lines that organises the SPL code base into a set of delta modules that comprise
modifications of object-oriented programs. Delta feature nets are conceptually similar
to delta modules to the extent that both encapsulate certain behavioural modifications
that can be plugged into a larger system. However, our notion of delta application
enables the modular specification of an SPL, whereas in DOP it is a mechanism of
deriving software products.

Feature Nets 37

With regard to dynamic SPLs, dynamic Feature Nets as introduced in [31] is, to
the best of our knowledge, the first formal specification and analysis framework for
dynamic SPL behaviour. The DFN formalism’s strength is simplicity, making it easy
to understand and use. Cordy et al.’s work [11] goes in a similar direction by extending
FTS with labels that update the feature selection. To reduce the space of runtime
configurations, adaptive FTS distinguish between fixed features (defined at compile
time), adaptable features (which the program can chose to modify at runtime), and
environment features (which reflect variability of the environment).

10 Conclusion

This paper proposes a formal framework for modelling systems with a high degree of
variability, addressing an important challenge in software product line engineering. The
modelling formalism used is Feature Nets, a lightweight Petri net extension, of which
we present two variants. In transition-labelled FNs, the firing of transitions is condi-
tional on the presence of certain features through application conditions. Arc-labelled
FNs place application conditions on the arcs, effectively determining their presence or
absence. For arc-labelled FNs we present an approach to composing behavioural mod-
els from separately engineered models of individual features. Three correctness criteria
for such compositions are also presented.

The Dynamic FN model extends transition-labelled FNs with the ability to express
dynamic variability. Update expressions associated with DFN transitions make it easy
to model changes in the feature selection of a product based on its execution: firing a
transition updates the feature configuration in place. To our knowledge, this is the first
model to capture both the variable and dynamic aspects of SPL in a single formalism.

Future work will further explore the possibilities of analysis and verification, and
investigate the practical applicability of the proposed modular techniques. The usage
of the mCRL2 toolset to analyse and verify Feature Nets (Section 8) provide a simple
and elegant starting point. The verification of more complex behavioural properties of
Petri-nets [30] can also be investigated, after adjusting its adequacy for the domain of
products and product lines. The practical applicability of the modular modelling FN
techniques that we propose also needs closer examination, especially with respect to
scalability. This could be accomplished by a case study involving more substantial SPL
models.

References

1. Agerwala, T., Flynn, M.: Comments on capabilities, limitations and “correctness” of Petri
nets. In: 1st annual symposium on Computer architecture Proceedings, ISCA ’73, pp.
81–86. ACM Press (1973)

2. Asirelli, P., Beek, M., Fantechi, A., Gnesi, S.: A logical framework to deal with variability.
In: Integrated Formal Methods, LNCS, vol. 6396, pp. 43–58. Springer (2010)

3. Asirelli, P., Beek, M., Fantechi, A., Gnesi, S.: A compositional framework to derive product
line behavioural descriptions. In: Leveraging Applications of Formal Methods, Verifica-
tion and Validation. Technologies for Mastering Change, LNCS, vol. 7609, pp. 146–161.
Springer (2012)

4. Baldan, P., Corradini, A., Ehrig, H., Heckel, R.: Compositional semantics for open Petri
nets based on deterministic processes. Mathematical Structures in Computer Science
15(01), 1–35 (2005)

38 Radu Muschevici et al.

5. ter Beek, M.H., de Vink, E.P.: Towards modular verification of software product lines with
mCRL2. In: Leveraging Applications of Formal Methods, Verification and Validation.
Technologies for Mastering Change, LNCS, vol. 8802, pp. 368–385. Springer (2014)

6. Berthelot, G.: Transformations and decompositions of nets. Petri Nets: Central Models
and Their Properties pp. 359–376 (1987)

7. Clarke, D.: Quality Assurance for Diverse Systems, chap. 5, pp. 27–37 (2011). Deliverable
1.2 of the EternalS Coordination Action (FP7-247758), supported by the 7th Framework
Programme of the EC within the FET (Future and Emerging Technologies) scheme

8. Classen, A., Cordy, M., Heymans, P., Legay, A., Schobbens, P.Y.: Model checking software
product lines with SNIP. Journal on Software Tools for Technology Transfer 14(5), 589–
612 (2012)

9. Classen, A., Cordy, M., Heymans, P., Legay, A., Schobbens, P.Y.: Formal semantics, modu-
lar specification, and symbolic verification of product-line behaviour. Science of Computer
Programming 80, 416–439 (2014)

10. Classen, A., Cordy, M., Schobbens, P.Y., Heymans, P., Legay, A., Raskin, J.F.: Featured
transition systems: Foundations for verifying variability-intensive systems and their ap-
plication to LTL model checking. IEEE Transactions on Software Engineering 39(8),
1069–1089 (2013)

11. Cordy, M., Classen, A., Heymans, P., Legay, A., Schobbens, P.Y.: Model checking adap-
tive software with featured transition systems. In: Assurances for Self-Adaptive Systems,
LNCS, vol. 7740, pp. 1–29. Springer (2013)

12. Cranen, S., Groote, J.F., Keiren, J.J.A., Stappers, F.P.M., de Vink, E.P., Wesselink, W.,
Willemse, T.A.C.: An overview of the mCRL2 toolset and its recent advances. In: N. Piter-
man, S.A. Smolka (eds.) TACAS, Lecture Notes in Computer Science, vol. 7795, pp. 199–
213. Springer (2013)

13. Țiplea, F.L.: On conditional grammars and conditional Petri nets, pp. 431–455. World
Scientific Publishing Co., Inc., River Edge, NJ, USA (1994)

14. Czarnecki, K., Antkiewicz, M.: Mapping features to models: A template approach based on
superimposed variants. In: Generative Programming and Component Engineering, LNCS,
vol. 3676, pp. 422–437. Springer (2005)

15. Desel, J., Esparza, J.: Free choice Petri nets. Cambridge University Press, New York, NY,
USA (1995)

16. Fantechi, A., Gnesi, S.: Formal modeling for product families engineering. In: International
Software Product Line Conference, SPLC ’08, pp. 193–202. IEEE Press (2008)

17. Farooq, U., Lam, C.P., Li, H.: Transformation methodology for UML 2.0 activity diagram
into colored Petri nets. In: Advances in Computer Science and Technology, pp. 128–133.
ACTA Press (2007)

18. Fischbein, D., Uchitel, S., Braberman, V.: A foundation for behavioural conformance in
software product line architectures. In: International Workshop on the Role of Software
Architecture in Analysis and Testing, pp. 39–48. ACM Press (2006)

19. Ghabri, M.K., Ladet, P.: Dynamic Petri nets and their applications. In: International
Conference on Computer Integrated Manufacturing and Automation Technology, pp. 93–
98 (1994)

20. Girault, C., Valk, R.: Petri Nets for System Engineering: A Guide to Modeling, Verification,
and Applications. Springer, Secaucus, NJ, USA (2001)

21. Gruler, A., Leucker, M., Scheidemann, K.: Calculating and modeling common parts of
software product lines. In: International Software Product Line Conference, SPLC ’08,
pp. 203–212. IEEE Press (2008)

22. Gruler, A., Leucker, M., Scheidemann, K.: Modeling and model checking software product
lines. In: International Conference on Formal Methods for Open Object-based Distributed
Systems, LNCS, vol. 5051, pp. 113–131. Springer (2008)

23. Hallsteinsen, S., Hinchey, M., Park, S., Schmid, K.: Dynamic software product lines. IEEE
Computer 41(4), 93–95 (2008)

24. Holzmann, G.J.: The SPIN Model Checker - primer and reference manual. Addison-Wesley
(2004)

25. Kästner, C., Apel, S., Kuhlemann, M.: Granularity in software product lines. In: ICSE
’08: Proceedings of the 30th international conference on Software engineering, pp. 311–320.
ACM Press (2008)

26. Larsen, K., Nyman, U., Wa̧sowski, A.: Modal I/O automata for interface and product line
theories. In: Programming Languages and Systems, LNCS, vol. 4421, pp. 64–79. Springer
(2007)

Feature Nets 39

27. Larsen, K., Thomsen, B.: A modal process logic. In: Third Annual Symposium on Logic
in Computer Science, pp. 203–210. IEEE Press (1988)

28. Lipton, R.: The reachability problem requires exponential space. Tech. Rep. 62, Yale
University (1976)

29. Llorens, M., Oliver, J.: Structural and dynamic changes in concurrent systems: reconfig-
urable Petri nets. IEEE Transactions on Computers 53(9), 1147–1158 (2004)

30. Murata, T.: Petri nets: Properties, analysis and applications. Proceedings of the IEEE
77(4), 541–580 (1989)

31. Muschevici, R., Clarke, D., Proença, J.: Feature Petri Nets. In: Workshop on Formal
Methods and Analysis in Software Product Line Engineering, SPLC ’10, vol. 2, pp. 99–
106. Lancaster University (2010)

32. Muschevici, R., Proença, J., Clarke, D.: Modular modelling of software product lines with
Feature Nets. In: Software Engineering and Formal Methods, LNCS, vol. 7041, pp. 318–
333. Springer (2011)

33. Pohl, K., Böckle, G., van der Linden, F.: Software Product Line Engineering. Springer
(2005)

34. Schaefer, I.: Variability modelling for model-driven development of software product lines.
In: D. Benavides, D.S. Batory, P. Grünbacher (eds.) International Workshop on Variability
Modelling of Software-Intensive Systems, vol. 37, pp. 85–92. Universität Duisburg-Essen,
Linz, Austria (2010)

35. Schaefer, I., Bettini, L., Damiani, F., Tanzarella, N.: Delta-oriented programming of soft-
ware product lines. In: International Software Product Line Conference, SPLC ’10, pp.
77–91. Springer (2010)

36. Schnoebelen, P., Sidorova, N.: Bisimulation and the reduction of Petri nets. In: Application
and Theory of Petri Nets, LNCS, vol. 1825, pp. 409–423. Springer (2000)

37. Souissi, Y., Memmi, G.: Composition of nets via a communication medium. In: Advances
in Petri Nets, LNCS, vol. 483, pp. 457–470. Springer (1991)

38. Valk, R.: Self-modifying nets, a natural extension of Petri nets. Automata, Languages and
Programming pp. 464–476 (1978)

