7,118 research outputs found

    Existence of Density Functionals for Excited States and Resonances

    Get PDF
    We show how every bound state of a finite system of identical fermions, whether a ground state or an excited one, defines a density functional. Degeneracies created by a symmetry group can be trivially lifted by a pseudo-Zeeman effect. When complex scaling can be used to regularize a resonance into a square integrable state, a DF also exists.Comment: 4 pages, no figure

    Is friction responsible for the reduction of fusion rates far below the Coulomb barrier?

    Full text link
    The fusion of two interacting heavy ions traditionally has been interpreted in terms of the penetration of the projectile into the target. Observed rates well below the Coulomb barrier are considerably lower than estimates obtained from penetration factors. One approach in the analysis of the data invokes coupling to non-elastic channels in the scattering as the source of the depletion. Another is to analyze those data in terms of tunneling in semi-classical models, with the observed depletion being taken as evidence of a ``friction'' under the barrier. A complementary approach is to consider such tunneling in terms of a fully quantal model. We investigate tunneling with both one-dimensional and three-dimensional models in a fully quantal approach to investigate possible sources for such a friction. We find that the observed phenomenon may not be explained by friction. However, we find that under certain conditions tunneling may be enhanced or diminished by up to 50%, which finds analogy with observation, without the invocation of a friction under the barrier.Comment: 18 pages, 15 figures embedde

    Phenomenological discussion of B→PVB\to P V decays in QCD improved factorization approach

    Full text link
    Trying a global fit of the experimental branching ratios and CP-asymmetries of the charmless B→PVB\to PV decays according to QCD factorization, we find it impossible to reach a satisfactory agreement, the confidence level (CL) of the best fit is smaller than .1 %. This failure reflects the difficulty to accommodate several large experimental branching ratios of the strange channels. Furthermore, experiment was not able to exclude a large direct CP asymmetry in Bˉ0→ρ+π−\bar {B}^0\to\rho^+ \pi^-, which is predicted very small by QCD factorization. Proposing a fit with QCD factorization complemented by a charming-penguin inspired model we reach a best fit which is not excluded by experiment (CL of about 8 %) but is not fully convincing. These negative results must be tempered by the remark that some of the experimental data used are recent and might still evolve significantly.Comment: 8 pages, 2 figures (requires epsfig, psfrag),talk presented at the XXXVIIIth Rencontres de Moriond: Electroweak Interactions and Unified Theories,Les Arcs, France, March 15-22, 2003. To be published in the Proceeding

    Finite geometries and diffractive orbits in isospectral billiards

    Full text link
    Several examples of pairs of isospectral planar domains have been produced in the two-dimensional Euclidean space by various methods. We show that all these examples rely on the symmetry between points and blocks in finite projective spaces; from the properties of these spaces, one can derive a relation between Green functions as well as a relation between diffractive orbits in isospectral billiards.Comment: 10 page

    Delocalization transition for the Google matrix

    Full text link
    We study the localization properties of eigenvectors of the Google matrix, generated both from the World Wide Web and from the Albert-Barabasi model of networks. We establish the emergence of a delocalization phase for the PageRank vector when network parameters are changed. In the phase of localized PageRank, a delocalization takes place in the complex plane of eigenvalues of the matrix, leading to delocalized relaxation modes. We argue that the efficiency of information retrieval by Google-type search is strongly affected in the phase of delocalized PageRank.Comment: 4 pages, 5 figures. Research done at http://www.quantware.ups-tlse.fr

    Quantum computing of delocalization in small-world networks

    Full text link
    We study a quantum small-world network with disorder and show that the system exhibits a delocalization transition. A quantum algorithm is built up which simulates the evolution operator of the model in a polynomial number of gates for exponential number of vertices in the network. The total computational gain is shown to depend on the parameters of the network and a larger than quadratic speed-up can be reached. We also investigate the robustness of the algorithm in presence of imperfections.Comment: 4 pages, 5 figures, research done at http://www.quantware.ups-tlse.fr

    Open problems in nuclear density functional theory

    Full text link
    This note describes five subjects of some interest for the density functional theory in nuclear physics. These are, respectively, i) the need for concave functionals, ii) the nature of the Kohn-Sham potential for the radial density theory, iii) a proper implementation of a density functional for an "intrinsic" rotational density, iv) the possible existence of a potential driving the square root of the density, and v) the existence of many models where a density functional can be explicitly constructed.Comment: 10 page

    Genetic Correlations in Mutation Processes

    Full text link
    We study the role of phylogenetic trees on correlations in mutation processes. Generally, correlations decay exponentially with the generation number. We find that two distinct regimes of behavior exist. For mutation rates smaller than a critical rate, the underlying tree morphology is almost irrelevant, while mutation rates higher than this critical rate lead to strong tree-dependent correlations. We show analytically that identical critical behavior underlies all multiple point correlations. This behavior generally characterizes branching processes undergoing mutation.Comment: revtex, 8 pages, 2 fig

    Cross-relaxation and phonon bottleneck effects on magnetization dynamics in LiYF4:Ho3+

    Full text link
    Frequency and dc magnetic field dependences of dynamic susceptibility in diluted paramagnets LiYF4_4:Ho3+^{3+} have been measured at liquid helium temperatures in the ac and dc magnetic fields parallel to the symmetry axis of a tetragonal crystal lattice. Experimental data are analyzed in the framework of microscopic theory of relaxation rates in the manifold of 24 electron-nuclear sublevels of the lowest non-Kramers doublet and the first excited singlet in the Ho3+^{3+} ground multiplet 5I8^5I_8 split by the crystal field of S4_4 symmetry. The one-phonon transition probabilities were computed using electron-phonon coupling constants calculated in the framework of exchange charge model and were checked by optical piezospectroscopic measurements. The specific features observed in field dependences of the in- and out-of-phase susceptibilities (humps and dips, respectively) at the crossings (anti-crossings) of the electron-nuclear sublevels are well reproduced by simulations when the phonon bottleneck effect and the cross-spin relaxation are taken into account

    Entanglement and localization of wavefunctions

    Full text link
    We review recent works that relate entanglement of random vectors to their localization properties. In particular, the linear entropy is related by a simple expression to the inverse participation ratio, while next orders of the entropy of entanglement contain information about e.g. the multifractal exponents. Numerical simulations show that these results can account for the entanglement present in wavefunctions of physical systems.Comment: 6 pages, 4 figures, to appear in the proceedings of the NATO Advanced Research Workshop 'Recent Advances in Nonlinear Dynamics and Complex System Physics', Tashkent, Uzbekistan, 200
    • 

    corecore