158 research outputs found

    Early Effects of P-15 on Human Bone Marrow Stem Cells

    Get PDF
    OBJECTIVES: Peptide-15 (P-15) is an analogue of the cell binding domain of collagen. P-15 has been shown to facilitate physiological to process in a way similar to collagen, to serve as anchorage for cells, and to promote the binding, migration and differentiation of cells. However, how P-15 alters osteoblast activity to promote bone formation is poorly understood. To study the osteoinductive properties of peptide P-15, we analyzed the expression levels of bone related genes in human mesenchymal stem cells treated with this biomaterial. MATERIAL AND METHODS: Using real time Reverse Transcription-Polymerase Chain Reaction the quantitative expression of specific genes, like transcriptional factors (RUNX2 and SP7), bone related genes (SPP1, COL1A1, COL3A1, BGLAP, ALPL, and FOSL1) and mesenchymal stem cells marker (ENG) were examined. RESULTS: P-15 causes a considerable induction of osteoblast transcriptional factor like osterix (SP7) and of the bone related genes osteopontin (SPP1) and osteocalcin (BGLAP). In contrast the expression of endoglin (ENG) was markedly decreased in stem cells treated with P-15 respect to untreated cells, indicating the differentiation effect of this biomaterial on stem cells. CONCLUSIONS: The present study shows the effect of P-15 on mesenchymal stem cells in the early differentiation stages: P-15 is an inducer of osteogenesis on human stem cells as indicated by the activation of bone related markers SP7, SPP1 and BGLAP.The results may allow a better understanding of the molecular mechanism of bone regeneration and as a model for comparing other materials with similar clinical effects

    Genetic Effects of Trabecular Titanium on MG-63 Cell Line: A Genetic Profiling Evaluation

    Get PDF
    Pure titanium and titanium alloys are materials widely used in orthopaedics because of their mechanical properties, chemical stability, and biocompatibility. Recently, a new highly porous titanium biomaterial named Trabecular Titanium (TT) has been developed. In this in vitro study, we tested the genetic effects of TT on osteoblast-like cells (MG63) using DNA microarrays technology: cDNA microarrays provides the ability to comparatively analyze mRNA expression of thousands of genes in parallel thus showing activated and repressed genes by the presence of the TT. Several genes that were significantly up- or downregulated have been identified. Globally, it was demonstrated that TT stimulates osteoblasts proliferation and differentiation, and reduces apoptosis. Therefore, all these effects can contribute to improve the osseointegration of this material. These results encourage the clinical application of Trabecular Titanium to prosthetic devices

    Improvement of Tuberculosis Laboratory Capacity on Pemba Island, Zanzibar: A Health Cooperation Project.

    Get PDF
    Low-income countries with high Tuberculosis burden have few reference laboratories able to perform TB culture. In 2006, the Zanzibar National TB Control Programme planned to decentralize TB diagnostics. The Italian Cooperation Agency with the scientific support of the "L. Spallanzani" National Institute for Infectious Diseases sustained the project through the implementation of a TB reference laboratory in a low-income country with a high prevalence of TB. The implementation steps were: 1) TB laboratory design according to the WHO standards; 2) laboratory equipment and reagent supplies for microscopy, cultures, and identification; 3) on-the-job training of the local staff; 4) web- and telemedicine-based supervision. From April 2007 to December 2010, 921 sputum samples were received from 40 peripheral laboratories: 120 TB cases were diagnosed. Of all the smear-positive cases, 74.2% were culture-positive. During the year 2010, the smear positive to culture positive rate increased up to 100%. In March 20, 2010 the Ministry of Health and Social Welfare of Zanzibar officially recognized the Public Health Laboratory- Ivo de Carneri as the National TB Reference Laboratory for the Zanzibar Archipelago. An advanced TB laboratory can represent a low cost solution to strengthen the TB diagnosis, to provide capacity building and mid-term sustainability

    Estimate of Anemia with New Non-Invasive Systems—A Moment of Reflection

    Get PDF
    Anemia is a global public health problem with major consequences for human health. About a quarter of the world population shows a hemoglobin concentration that is below the recommended thresholds. Non-invasive methods for monitoring and identifying potential risk of anemia and smartphone-based devices to perform this task are promising in addressing this pathology. We have considered some well-known studies carried out on this topic since the main purpose of this work was not to produce a review. The first group of papers describes the approaches for the clinical evaluation of anemia focused on different human exposed tissues, while we used a second group to overview some technologies, basic methods, and principles of operation of some devices and highlight some technical problems. Results extracted from the second group of papers examined were aggregated in two comparison tables. A growing interest in this topic is demonstrated by the increasing number of papers published recently. We believe we have identified several critical issues in the published studies, including those published by us. Just as an example, in many papers the dataset used is not described. With this paper we wish to open a discussion on these issues. Few papers have been sufficient to highlight differences in the experimental conditions and this makes the comparison of the results difficult. Differences are also found in the identification of the regions of interest in the tissue, descriptions of the datasets, and other boundary conditions. These critical issues are discussed together with open problems and common mistakes that probably we are making. We propose the definition of a road-map and a common agenda for research on this topic. In this sense, we want to highlight here some issues that seem worthy of common discussion and the subject of synergistic agreements. This paper, and in particular, the discussion could be the starting point for an open debate about the dissemination of our experiments and pave the way for further updates and improvements of what we have outlined

    Red Giant stars in the Large Magellanic Cloud clusters

    Full text link
    We present deep J,H,Ks photometry and accurate Color Magnitude Diagrams down to K ~18.5, for a sample of 13 globular clusters in the Large Magellanic Cloud. This data set combined with the previous sample of 6 clusters published by our group gives the opportunity to study the properties of giant stars in clusters with different ages (ranging from ~80 Myr up to ~3.5 Gyr). Quantitative estimates of star population ratios (by number and luminosity) in the Asymptotic Giant Branch, the Red Giant Branch and the He-clump, have been obtained and compared with theoretical models in the framework of probing the so-called phase transitions. The AGB contribution to the total luminosity starts to be significant at ~200 Myr and reaches its maximum at ~5-600 Myr, when the RGB Phase Transition is starting. At ~900 Myr the full developing of an extended and well populated RGB has been completed. Both the occurrence of the AGB and RGB Phase Transitions are sharp events, lasting a few hundreds Myr only. These empirical results agree very well with the theoretical predictions of simple stellar population models based on canonical tracks and the fuel-consumption approach.Comment: 32 pages, 11 figures, accepted to Ap

    The VMC survey - XVII : The proper motions of the Small Magellanic Cloud and the Milky Way globular cluster 47 Tucanae

    Get PDF
    In this study we use multi-epoch near-infrared observations from the VISTA survey of the Magellanic Cloud system (VMC) to measure the proper motion of different stellar populations in a tile of 1.5 deg sq. in size in the direction of the Galactic globular cluster 47 Tuc. We obtain the proper motion of the cluster itself, of the Small Magellanic Cloud (SMC), and of the field Milky Way stars. Stars of the three main stellar components are selected from their spatial distribution and their distribution in colour-magnitude diagrams. Their average coordinate displacement is computed from the difference between multiple Ks-band observations for stars as faint as Ks=19 mag. Proper motions are derived from the slope of the best-fitting line among 10 VMC epochs over a time baseline of ~1 yr. Background galaxies are used to calibrate the absolute astrometric reference frame. The resulting absolute proper motion of 47 Tuc is (mu_alpha cos(delta), mu_delta)=(+7.26+/-0.03, -1.25+/-0.03) mas/yr. This measurement refers to about 35000 sources distributed between 10 and 60 arcmin from the cluster centre. For the SMC we obtain (mu_alpha cos(delta), mu_delta)=(+1.16+/-0.07, -0.81+/-0.07) mas/yr from about 5250 red clump and red giant branch stars. The absolute proper motion of the Milky Way population in the line-of-sight (l =305.9, b =-44.9) of this VISTA tile is (mu_alpha cos(delta), mu_delta)=(+10.22+/-0.14, -1.27+/-0.12) mas/yr and results from about 4000 sources. Systematic uncertainties associated to the astrometric reference system are 0.18 mas/yr. Thanks to the proper motion we detect 47 Tuc stars beyond its tidal radius.Peer reviewe

    The VMC survey - XI : Radial Stellar Population Gradients in the Galactic Globular Cluster 47 Tucanae

    Get PDF
    Copyright American Astronomical SocietyWe present a deep near-infrared color-magnitude diagram of the Galactic globular cluster 47 Tucanae, obtained with the Visible and Infrared Survey Telescope for Astronomy (VISTA) as part of the VISTA near-infrared Y, J, Ks survey of the Magellanic System (VMC). The cluster stars comprising both the subgiant and red giant branches exhibit apparent, continuous variations in color-magnitude space as a function of radius. Subgiant branch stars at larger radii are systematically brighter than their counterparts closer to the cluster core; similarly, red-giant-branch stars in the cluster's periphery are bluer than their more centrally located cousins. The observations can very well be described by adopting an age spread of ~0.5 Gyr as well as radial gradients in both the cluster's helium abundance (Y) and metallicity (Z), which change gradually from (Y = 0.28, Z = 0.005) in the cluster core to (Y = 0.25, Z = 0.003) in its periphery. We conclude that the cluster's inner regions host a significant fraction of second-generation stars, which decreases with increasing radius; the stellar population in the 47 Tuc periphery is well approximated by a simple stellar population.Peer reviewe

    The VMC Survey -- XXXIV. Morphology of Stellar Populations in the Magellanic Clouds

    Get PDF
    The Magellanic Clouds are nearby dwarf irregular galaxies whose morphologies show different properties when traced by different stellar populations, making them an important laboratory for studying galaxy morphologies. We study the morphology of the Magellanic Clouds using data from the VISTA survey of the Magellanic Clouds system (VMC). We used about 1010 and 2.52.5 million sources across an area of ∼105\sim105 deg2^2 and ∼42\sim42 deg2^2 towards the Large and Small Magellanic Cloud (LMC and SMC), respectively. We estimated median ages of stellar populations occupying different regions of the near-infrared (J−Ks,KsJ-K_\mathrm{s}, K_\mathrm{s}) colour-magnitude diagram. Morphological maps were produced and detailed features in the central regions were characterised for the first time with bins corresponding to a spatial resolution of 0.130.13 kpc (LMC) and 0.160.16 kpc (SMC). In the LMC, we find that main sequence stars show coherent structures that grow with age and trace the multiple spiral arms of the galaxy, star forming regions become dimmer as we progress in age, while supergiant stars are centrally concentrated. Intermediate-age stars, despite tracing a regular and symmetrical morphology, show central clumps and hints of spiral arms. In the SMC, young main sequence stars depict a broken bar. Intermediate-age populations show signatures of elongation towards the Magellanic Bridge that can be attributed to the LMC-SMC interaction ∼200\sim200 Myr ago. They also show irregular central features suggesting that the inner SMC has also been influenced by tidal interactions.Comment: Accepted for publication in MNRAS, 20 pages, 12 figures and 2 table

    Age dissection of the Milky Way discs: Red giants in the Kepler field

    Get PDF
    Ensemble studies of red-giant stars with exquisite asteroseismic (Kepler), spectroscopic (APOGEE), and astrometric (Gaia) constraints offer a novel opportunity to recast and address long-standing questions concerning the evolution of stars and of the Galaxy. Here, we infer masses and ages for nearly 5400 giants with available Kepler light curves and APOGEE spectra using the code PARAM, and discuss some of the systematics that may affect the accuracy of the inferred stellar properties. We then present patterns in mass, evolutionary state, age, chemical abundance, and orbital parameters that we deem robust against the systematic uncertainties explored. First, we look at age-chemical-abundances ([Fe/H] and [α/Fe]) relations. We find a dearth of young, metal-rich ([Fe/H] > 0.2) stars, and the existence of a significant population of old (8−9 Gyr), low-[α/Fe], super-solar metallicity stars, reminiscent of the age and metallicity of the well-studied open cluster NGC 6791. The age-chemo-kinematic properties of these stars indicate that efficient radial migration happens in the thin disc. We find that ages and masses of the nearly 400 α-element-rich red-giant-branch (RGB) stars in our sample are compatible with those of an old (∼11 Gyr), nearly coeval, chemical-thick disc population. Using a statistical model, we show that the width of the observed age distribution is dominated by the random uncertainties on age, and that the spread of the inferred intrinsic age distribution is such that 95% of the population was born within ∼1.5 Gyr. Moreover, we find a difference in the vertical velocity dispersion between low- and high-[α/Fe] populations. This discontinuity, together with the chemical one in the [α/Fe] versus [Fe/H] diagram, and with the inferred age distributions, not only confirms the different chemo-dynamical histories of the chemical-thick and thin discs, but it is also suggestive of a halt in the star formation (quenching) after the formation of the chemical-thick disc. We then exploit the almost coeval α-rich population to gain insight into processes that may have altered the mass of a star along its evolution, which are key to improving the mapping of the current, observed, stellar mass to the initial mass and thus to the age. Comparing the mass distribution of stars on the lower RGB (R <  11 R⊙) with those in the red clump (RC), we find evidence for a mean integrated RGB mass loss ⟨ΔM⟩ = 0.10 ± 0.02 M⊙. Finally, we find that the occurrence of massive (M ≳ 1.1 M⊙) α-rich stars is of the order of 5% on the RGB, and significantly higher in the RC, supporting the scenario in which most of these stars had undergone an interaction with a companion
    • …
    corecore