43 research outputs found

    UAV and Structure from Motion Approach to Monitor the Maierato Landslide Evolution

    Get PDF
    In February 2010 a large landslide affected the Maierato municipality (Calabria, Italy). The landslide, mainly caused by a period of prolonged and intense rainfalls, produced a mass displacement of about 5 million mÂł and several damages to farmlands, houses and infrastructures. In the aftermath several conventional monitoring actions were carried out. In the current post emergency phase, the monitoring was resumed by carrying out unmanned aerial vehicles (UAV) flights in order to describe the recent behavior of the landslide and to assess residual risk. Thanks to the potentialities of the structure from motion algorithms and the availability of post emergency reconnaissance photos and a previous 3D dataset, the three-dimensional evolution of the area was computed. Moreover, an experimental multispectral flight was carried out and its results supported the interpretation of local phenomena. The dataset allowed to quantify the elevation losses and raises in several peculiar sectors of the landslide. The obtained results confirm that the UAV monitoring and the structure from motion approach can effectively contribute to manage residual risk in the medium and long term within an integrated geotechnical monitoring network

    A multi-scale methodological approach for slow-moving landslide risk mitigation in urban areas, southern Italy

    Get PDF
    Several urban areas in Euro-Mediterranean countries are affected by slow-moving landslides that, even if rarely associated with the loss of human life, can cause damage to structures and infrastructure. In such contexts, the progressive decay of the built environment can bring along a generalized increase of the physical vulnerability and, as a result, slow-moving landslide risk increases over the time. Under these conditions, as long as suitable risk mitigation measures are lacking, the level of risk (also related to earthquakes) could turn out to be no longer acceptable within an a priori unknown time interval. This problem has a relevant social-economic impact, thus requiring the adoption of risk mitigation strategies that need to be effective and, at the same time, sustainable for the involved stakeholders. In this regard, this paper proposes a multi-scale methodological approach—based on the joint use of satellite-derived displacement monitoring data and the results of building damage surveys—whose applicability is tested with reference to urban areas affected by slow-moving landslides in Calabria region (southern Italy)

    Weathering grade in granitoid rocks: The San Giovanni in Fiore area (Calabria, Italy)

    Get PDF
    This paper illustrates the methodology and techniques for the compilation of a thematic (engineering) geological map based on detailed mapping of the weathering grade of crystalline rocks occurring in a portion of the Sila Massif close to the San Giovanni in Fiore Village (Calabria, Italy). The map (1:5000 scale), covering an area of about 20 km2, was compiled combining new geological and structural data with the results of a weathering grade field survey. The methodology, used to distinguish and map the weathering grade classes, was performed using qualitative criteria, semi-quantitative tests, and petrographic analysis of weathered rock samples. The Main Map, presented in this paper, aims to provide a useful tool for land-use planning, for geological hazard assessment and engineering perspectives

    Full integration of geomorphological, geotechnical, A-DInSAR and damage data for detailed geometric-kinematic features of a slow-moving landslide in urban area

    Get PDF
    AbstractThe reconnaissance, mapping and analysis of kinematic features of slow-moving landslides evolving along medium-deep sliding surfaces in urban areas can be a difficult task due to the presence and interactions of/with anthropic structures/infrastructures and human activities that can conceal morphological signs of landslide activity. The paper presents an integrated approach to investigate the boundaries, type of movement, kinematics and interactions (in terms of damage severity distribution) with the built environment of a roto-translational slow-moving landslide affecting the historic centre of Lungro town (Calabria region, southern Italy). For this purpose, ancillary multi-source data (e.g. geological-geomorphological features and geotechnical properties of geomaterials), both conventional inclinometer monitoring and innovative non-invasive remote sensing (i.e. A-DInSAR) displacement data were jointly analyzed and interpreted to derive the A-DInSAR-geotechnical velocity (DGV) map of the landslide. This result was then cross-compared with detailed information available on the visible effects (i.e. crack pattern and width) on the exposed buildings along with possible conditioning factors to displacement evolution (i.e. remedial works, sub-services, etc.). The full integration of multi-source data available at the slope scale, by maximizing each contribution, provided a comprehensive outline of kinematic-geometric landslide features that were used to investigate the damage distribution and to detect, if any, anomalous locations of damage severity and relative possible causes. This knowledge can be used to manage landslide risk in the short term and, in particular, is propaedeutic to set up an advanced coupled geotechnical-structural model to simulate both the landslide displacements and the behavior of interacting buildings and, therefore, to implement appropriate risk mitigation strategies over medium/long period

    The interplay of structural pathway and weathering intensity in forming mass-wasting processes in deeply weathered gneissic rocks (Sila Massif, Calabria, Italy)

    Get PDF
    This paper presents a detailed map (Main Map) showing geology, tectonics, weathering intensity and spatial distribution of landslides in the San Pietro in Guarano study area (about 7.5 km2), located in the north-western sector of Calabria (southern Italy). In this area, deeply weathered high-grade metamorphic rocks and different types/categories of mass movements are widespread. The Main Map, at 1:5000 scale, results from the combination of information gathered via analysis and interpretation of aerial photographs at different times and scales, multi-temporal geostructural and geomorphological surveys, field investigations and mapping of weathering grade in outcrop – through observation of geologically distinctive characteristics and qualitative and semi-quantitative engineering geological tests – integrated by means of the analysis of both weathering profiles on cutslopes and boreholes logs. The Main Map can represent a useful tool for authorities in charge of land-use planning and can profitably concur to typify landslides and to assess quantitative landslide risk

    Geology, slow-moving landslides, and damages to buildings in the Verbicaro area (north-western Calabria region, southern Italy)

    Get PDF
    This paper presents a mass movement inventory map at 1:5000 scale of the Verbicaro area (about 13 km2) located in the Calabria region (southern Italy). The Main Map results from the visual interpretation of aerial photographs, multi-temporal geomorphological field surveys, and field investigations of damage suffered by buildings. Some 53% of the study area is affected by a total of 252 landslides, comprising different types, state of activity, and size. The mapped landslides, mainly complex type, involve low-grade metamorphic rocks; among these, 15% are active and slow-move on pre-existing sliding surfaces. Moreover, out of 492 surveyed buildings, 347 are located on landslide-affected areas and experienced damages covering a broad range of severity levels. The Main Map can represent a useful tool for authorities in charge of land-use planning and urban management and can be used to pursue landslide risk analyses

    Curve empiriche di fragilità e di vulnerabilità di edifici in un’area della Regione Calabria affetta da frane a cinematica lenta

    No full text
    La presente comunicazione presenta una metodologia che, seguendo un approccio di tipo empirico basato sull’utilizzo combinato di dati DInSAR e di informazioni sul danno a edifici acquisite da rilievi in sito, conduce alla generazione di potenti strumenti di analisi e previsione quali le curve di fragilità e di vulnerabilità. Lo studio è condotto in un’area urbana dell’Appennino calabrese sistematicamente affetta da frane a cinematica lenta che hanno prodotto nel tempo un notevole stato di dissesto a strutture e infrastrutture. Le curve ottenute, laddove ulteriormente calibrate e successivamente validate, possono essere utilmente adottate per l’implementazione di strategie volte ad un’oculata gestione e salvaguardia del patrimonio edilizio

    Quantitative analysis of consequences to masonry buildings interacting with slow-moving landslide mechanisms: a case study

    No full text
    Quantitative analysis of consequences (in terms of expected monetary losses) induced by slow-moving landslide mechanisms to buildings or infrastructure networks is a key step in the landslide risk management framework. It can influence risk mitigation policies as well as help authorities in charge of land management in addressing/prioritizing interventions or restoration works. This kind of analysis generally requires multidisciplinary approaches, which cannot disregard a thorough knowledge of landslide mechanisms, and rich datasets that are seldom available as testified by the limited number of examples in the scientific literature. With reference to the well-documented case study of Lungro town (Calabria region, southern Italy)—severely affected by slow-moving landslides of different types—the present paper proposes and implements a multi-step procedure for monetary loss forecasting associated with different landslide kinematic/damage scenarios. Procedures to typify landslide mechanisms and physical vulnerability analysis, previously tested in the same area, are here appropriately merged to derive both kinematic and damage scenarios to the exposed buildings. Then, the outcomes are combined with economic data in order to forecast monetary loss at municipal scale. The proposed method and the obtained results, once further validated, could stand as reference case for other urban areas in similar geo-environmental contexts in order to derive useful information on expected direct consequences unless slow-moving landslide risk mitigation measures are taken
    corecore