11 research outputs found

    Tectonic Control of Subsidence and Southward Displacement of Southeast Louisiana with Respect to Stable North America

    Get PDF
    GPS data collected between 1995 and 2006 suggest that southeast Louisiana, including New Orleans and the larger Mississippi Delta, are both subsiding vertically and moving southward with respect to stable North America. Both motions are likely related due to their common tectonic setting. Subsidence in the New Orleans area occurs in part because it is located in the hanging wall of a large listric normal fault system that forms the northern boundary of a 7–10 km thick allochthon that is detached from stable North America. Southward motion of this allochthon relative to stable North America occurs at 2.2 ± 0.6 mm/yr. The average subsidence rate for GPS sites located on the allochthon is 5.2 ± 0.9 mm/yr relative to Earth\u27s center of mass, or ∌7 mm/yr relative to mean sea level. Motion of the allochthon is likely due to the gravity instability created by rapid Holocene sediment deposition in the delta following continental glacial retreat and is facilitated at depth by weak salt horizons. Because New Orleans and other communities of southeastern Louisiana lie atop this active allochthon, future motion of this body should be considered during rebuilding of the region following Hurricanes Katrina and Rita

    Observation of Glacial Isostatic Adjustment in “Stable” North America with GPS

    Get PDF
    Motions of three hundred and sixty Global Positioning System (GPS) sites in Canada and the United States yield a detailed image of the vertical and horizontal velocity fields within the nominally stable interior of the North American plate. By far the strongest signal is the effect of glacial isostatic adjustment (GIA) due to ice mass unloading during deglaciation. Vertical velocities show present-day uplift (∌10 mm/yr) near Hudson Bay, the site of thickest ice at the last glacial maximum. The uplift rates generally decrease with distance from Hudson Bay and change to subsidence (1–2 mm/yr) south of the Great Lakes. The “hinge line” separating uplift from subsidence is consistent with data from water level gauges along the Great Lakes, showing uplift along the northern shores and subsidence along the southern ones. Horizontal motions show outward motion from Hudson Bay with complex local variations especially in the far field. Although the vertical motions are generally consistent with the predictions of GIA models, the horizontal data illustrate the need and opportunity to improve the models via more accurate descriptions of the ice load and laterally variable mantle viscosity

    Observation of glacial isostatic adjustment in ‘‘stable’ ’ North America with GPS

    No full text
    [1] Motions of three hundred and sixty Global Positioning System (GPS) sites in Canada and the United States yield a detailed image of the vertical and horizontal velocity fields within the nominally stable interior of the North American plate. By far the strongest signal is the effect of glacial isostatic adjustment (GIA) due to ice mass unloading during deglaciation. Vertical velocities show present-day uplift ( 10 mm/yr) near Hudson Bay, the site of thickest ice at the last glacial maximum. The uplift rates generally decrease with distance from Hudson Bay and change to subsidence (1–2 mm/yr) south of the Great Lakes. The ‘‘hinge line’’ separating uplift from subsidence is consistent with data from water level gauges along the Great Lakes, showing uplift along the northern shores and subsidence along the southern ones. Horizontal motions show outward motion from Hudson Bay with complex local variations especially in the far field. Although the vertical motions are generally consistent with the predictions of GIA models, the horizontal data illustrate the need and opportunity to improve the models via more accurate descriptions of the ice load and laterally variable mantle viscosity. Citation: Sella, G. F., S. Stein, T. H

    Contributions Historical Documentaries on the Barcellona Area

    No full text

    REVEL: A Model for Recent Plate Velocities from Space Geodesy

    Get PDF
    We present a new global model for Recent plate velocities, REVEL, describing the relative velocities of 19 plates and continental blocks. The model is derived from publicly available space geodetic (primarily GPS) data for the period 1993–2000. We include an independent and rigorous estimate for GPS velocity uncertainties to assess plate rigidity and propagate these uncertainties to the velocity estimates. The velocity fields for North America, Eurasia, and Antarctica clearly show the effects of glacial isostatic adjustment, and Australia appears to depart from rigid plate behavior in a manner consistent with the mapped intraplate stress field. Two thirds of tested plate pairs agree with the NUVEL-1A geologic (3 Myr average) velocities within uncertainties. Three plate pairs (Caribbean–North America, Caribbean–South America, and North America–Pacific) exhibit significant differences between the geodetic and geologic model that may reflect systematic errors in NUVEL-1A due to the use of seafloor magnetic rate data that do not reflect the full plate rate because of tectonic complexities. Most other differences probably reflect real velocity changes over the last few million years. Several plate pairs (Arabia–Eurasia, Arabia–Nubia, Eurasia–India) move more slowly than the 3 Myr NUVEL-1A average, perhaps reflecting long-term deceleration associated with continental collision. Several other plate pairs, including Nazca–Pacific, Nazca–South America and Nubia–South America, are experiencing slowing that began ∌25 Ma, the beginning of the current phase of Andean crustal shortening

    Efficacy and safety of erdafitinib in patients with locally advanced or metastatic urothelial carcinoma: long-term follow-up of a phase 2 study

    No full text
    Background Erdafitinib, a pan-fibroblast growth factor receptor (FGFR) tyrosine kinase inhibitor, was shown to be clinically active and tolerable in patients with advanced urothelial carcinoma and prespecified FGFR alterations in the primary analysis of the BLC2001 study at median 11 months of follow-up. We aimed to assess the long-term efficacy and safety of the selected regimen of erdafitinib determined in the initial part of the study. Methods The open-label, non-comparator, phase 2, BLC2001 study was done at 126 medical centres in 14 countries across Asia, Europe, and North America. Eligible patients were aged 18 years or older with locally advanced and unresectable or metastatic urothelial carcinoma, at least one prespecified FGFR alteration, an Eastern Cooperative Oncology Group performance status of 0–2, and progressive disease after receiving at least one systemic chemotherapy or within 12 months of neoadjuvant or adjuvant chemotherapy or were ineligible for cisplatin. The selected regimen determined in the initial part of the study was continuous once daily 8 mg/day oral erdafitinib in 28-day cycles, with provision for pharmacodynamically guided uptitration to 9 mg/day (8 mg/day UpT). The primary endpoint was investigator-assessed confirmed objective response rate according to Response Evaluation Criteria In Solid Tumors version 1.1. Efficacy and safety were analysed in all treated patients who received at least one dose of erdafitinib. This is the final analysis of this study. This study is registered with ClinicalTrials.gov, NCT02365597. Findings Between May 25, 2015, and Aug 9, 2018, 2328 patients were screened, of whom 212 were enrolled and 101 were treated with the selected erdafitinib 8 mg/day UpT regimen. The data cutoff date for this analysis was Aug 9, 2019. Median efficacy follow-up was 24·0 months (IQR 22·7–26·6). The investigator-assessed objective response rate for patients treated with the selected erdafitinib regimen was 40 (40%; 95% CI 30–49) of 101 patients. The safety profile remained similar to that in the primary analysis, with no new safety signals reported with longer follow-up. Grade 3–4 treatment-emergent adverse events of any causality occurred in 72 (71%) of 101 patients. The most common grade 3–4 treatment-emergent adverse events of any cause were stomatitis (in 14 [14%] of 101 patients) and hyponatraemia (in 11 [11%]). There were no treatment-related deaths. Interpretation With longer follow-up, treatment with the selected regimen of erdafitinib showed consistent activity and a manageable safety profile in patients with locally advanced or metastatic urothelial carcinoma and prespecified FGFR alterations
    corecore