19 research outputs found

    Reduced Central Memory CD4+ T Cells and Increased T-Cell Activation Characterise Treatment-Naive Patients Newly Diagnosed at Late Stage of HIV Infection

    Get PDF
    Objectives. We investigated immune phenotypes of HIV+ patients who present late, considering late presenters (LPs, CD4+ < 350/μL and/or AIDS), advanced HIV disease (AHD, CD4+ < 200/μL and/or AIDS), and AIDS presenters (AIDS-defining condition at presentation, independently from CD4+). Methods. Patients newly diagnosed with HIV at our clinic between 2007–2011 were enrolled. Mann-Whitney/Chi-squared tests and logistic regression were used for statistics. Results. 275 patients were newly diagnosed with HIV between January/2007–March/2011. 130 (47%) were LPs, 79 (29%) showed AHD, and 49 (18%) were AIDS presenters. LP, AHD, and AIDS presenters were older and more frequently heterosexuals. Higher CD8+%, lower CD127+CD4+%, higher CD95+CD8+%, CD38+CD8+%, and CD45R0+CD38+CD8+% characterized LP/AHD/AIDS presentation. In multivariate analysis, older age, heterosexuality, higher CD8+%, and lower CD127+CD4+% were confirmed associated with LP/AHD. Lower CD4+ and higher CD38+CD8+% resulted independently associated with AIDS presentation. Conclusions. CD127 downregulation and immune activation characterize HIV+ patients presenting late and would be studied as additional markers of late presentation

    Detailed stratified GWAS analysis for severe COVID-19 in four European populations

    Get PDF
    Given the highly variable clinical phenotype of Coronavirus disease 2019 (COVID-19), a deeper analysis of the host genetic contribution to severe COVID-19 is important to improve our understanding of underlying disease mechanisms. Here, we describe an extended genome-wide association meta-analysis of a well-characterized cohort of 3255 COVID-19 patients with respiratory failure and 12 488 population controls from Italy, Spain, Norway and Germany/Austria, including stratified analyses based on age, sex and disease severity, as well as targeted analyses of chromosome Y haplotypes, the human leukocyte antigen region and the SARS-CoV-2 peptidome. By inversion imputation, we traced a reported association at 17q21.31 to a ~0.9-Mb inversion polymorphism that creates two highly differentiated haplotypes and characterized the potential effects of the inversion in detail. Our data, together with the 5th release of summary statistics from the COVID-19 Host Genetics Initiative including non-Caucasian individuals, also identified a new locus at 19q13.33, including NAPSA, a gene which is expressed primarily in alveolar cells responsible for gas exchange in the lung.S.E.H. and C.A.S. partially supported genotyping through a philanthropic donation. A.F. and D.E. were supported by a grant from the German Federal Ministry of Education and COVID-19 grant Research (BMBF; ID:01KI20197); A.F., D.E. and F.D. were supported by the Deutsche Forschungsgemeinschaft Cluster of Excellence ‘Precision Medicine in Chronic Inflammation’ (EXC2167). D.E. was supported by the German Federal Ministry of Education and Research (BMBF) within the framework of the Computational Life Sciences funding concept (CompLS grant 031L0165). D.E., K.B. and S.B. acknowledge the Novo Nordisk Foundation (NNF14CC0001 and NNF17OC0027594). T.L.L., A.T. and O.Ö. were funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), project numbers 279645989; 433116033; 437857095. M.W. and H.E. are supported by the German Research Foundation (DFG) through the Research Training Group 1743, ‘Genes, Environment and Inflammation’. L.V. received funding from: Ricerca Finalizzata Ministero della Salute (RF-2016-02364358), Italian Ministry of Health ‘CV PREVITAL’—strategie di prevenzione primaria cardiovascolare primaria nella popolazione italiana; The European Union (EU) Programme Horizon 2020 (under grant agreement No. 777377) for the project LITMUS- and for the project ‘REVEAL’; Fondazione IRCCS Ca’ Granda ‘Ricerca corrente’, Fondazione Sviluppo Ca’ Granda ‘Liver-BIBLE’ (PR-0391), Fondazione IRCCS Ca’ Granda ‘5permille’ ‘COVID-19 Biobank’ (RC100017A). A.B. was supported by a grant from Fondazione Cariplo to Fondazione Tettamanti: ‘Bio-banking of Covid-19 patient samples to support national and international research (Covid-Bank). This research was partly funded by an MIUR grant to the Department of Medical Sciences, under the program ‘Dipartimenti di Eccellenza 2018–2022’. This study makes use of data generated by the GCAT-Genomes for Life. Cohort study of the Genomes of Catalonia, Fundació IGTP (The Institute for Health Science Research Germans Trias i Pujol) IGTP is part of the CERCA Program/Generalitat de Catalunya. GCAT is supported by Acción de Dinamización del ISCIII-MINECO and the Ministry of Health of the Generalitat of Catalunya (ADE 10/00026); the Agència de Gestió d’Ajuts Universitaris i de Recerca (AGAUR) (2017-SGR 529). M.M. received research funding from grant PI19/00335 Acción Estratégica en Salud, integrated in the Spanish National RDI Plan and financed by ISCIII-Subdirección General de Evaluación and the Fondo Europeo de Desarrollo Regional (European Regional Development Fund (FEDER)-Una manera de hacer Europa’). B.C. is supported by national grants PI18/01512. X.F. is supported by the VEIS project (001-P-001647) (co-funded by the European Regional Development Fund (ERDF), ‘A way to build Europe’). Additional data included in this study were obtained in part by the COVICAT Study Group (Cohort Covid de Catalunya) supported by IsGlobal and IGTP, European Institute of Innovation & Technology (EIT), a body of the European Union, COVID-19 Rapid Response activity 73A and SR20-01024 La Caixa Foundation. A.J. and S.M. were supported by the Spanish Ministry of Economy and Competitiveness (grant numbers: PSE-010000-2006-6 and IPT-010000-2010-36). A.J. was also supported by national grant PI17/00019 from the Acción Estratégica en Salud (ISCIII) and the European Regional Development Fund (FEDER). The Basque Biobank, a hospital-related platform that also involves all Osakidetza health centres, the Basque government’s Department of Health and Onkologikoa, is operated by the Basque Foundation for Health Innovation and Research-BIOEF. M.C. received Grants BFU2016-77244-R and PID2019-107836RB-I00 funded by the Agencia Estatal de Investigación (AEI, Spain) and the European Regional Development Fund (FEDER, EU). M.R.G., J.A.H., R.G.D. and D.M.M. are supported by the ‘Spanish Ministry of Economy, Innovation and Competition, the Instituto de Salud Carlos III’ (PI19/01404, PI16/01842, PI19/00589, PI17/00535 and GLD19/00100) and by the Andalussian government (Proyectos Estratégicos-Fondos Feder PE-0451-2018, COVID-Premed, COVID GWAs). The position held by Itziar de Rojas Salarich is funded by grant FI20/00215, PFIS Contratos Predoctorales de Formación en Investigación en Salud. Enrique Calderón’s team is supported by CIBER of Epidemiology and Public Health (CIBERESP), ‘Instituto de Salud Carlos III’. J.C.H. reports grants from Research Council of Norway grant no 312780 during the conduct of the study. E.S. reports grants from Research Council of Norway grant no. 312769. The BioMaterialBank Nord is supported by the German Center for Lung Research (DZL), Airway Research Center North (ARCN). The BioMaterialBank Nord is member of popgen 2.0 network (P2N). P.K. Bergisch Gladbach, Germany and the Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany. He is supported by the German Federal Ministry of Education and Research (BMBF). O.A.C. is supported by the German Federal Ministry of Research and Education and is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy—CECAD, EXC 2030–390661388. The COMRI cohort is funded by Technical University of Munich, Munich, Germany. This work was supported by grants of the Rolf M. Schwiete Stiftung, the Saarland University, BMBF and The States of Saarland and Lower Saxony. K.U.L. is supported by the German Research Foundation (DFG, LU-1944/3-1). Genotyping for the BoSCO study is funded by the Institute of Human Genetics, University Hospital Bonn. F.H. was supported by the Bavarian State Ministry for Science and Arts. Part of the genotyping was supported by a grant to A.R. from the German Federal Ministry of Education and Research (BMBF, grant: 01ED1619A, European Alzheimer DNA BioBank, EADB) within the context of the EU Joint Programme—Neurodegenerative Disease Research (JPND). Additional funding was derived from the German Research Foundation (DFG) grant: RA 1971/6-1 to A.R. P.R. is supported by the DFG (CCGA Sequencing Centre and DFG ExC2167 PMI and by SH state funds for COVID19 research). F.T. is supported by the Clinician Scientist Program of the Deutsche Forschungsgemeinschaft Cluster of Excellence ‘Precision Medicine in Chronic Inflammation’ (EXC2167). C.L. and J.H. are supported by the German Center for Infection Research (DZIF). T.B., M.M.B., O.W. und A.H. are supported by the Stiftung Universitätsmedizin Essen. M.A.-H. was supported by Juan de la Cierva Incorporacion program, grant IJC2018-035131-I funded by MCIN/AEI/10.13039/501100011033. E.C.S. is supported by the Deutsche Forschungsgemeinschaft (DFG; SCHU 2419/2-1).Peer reviewe

    Detailed stratified GWAS analysis for severe COVID-19 in four European populations

    Get PDF
    Given the highly variable clinical phenotype of Coronavirus disease 2019 (COVID-19), a deeper analysis of the host genetic contribution to severe COVID-19 is important to improve our understanding of underlying disease mechanisms. Here, we describe an extended GWAS meta-analysis of a well-characterized cohort of 3,260 COVID-19 patients with respiratory failure and 12,483 population controls from Italy, Spain, Norway and Germany/Austria, including stratified analyses based on age, sex and disease severity, as well as targeted analyses of chromosome Y haplotypes, the human leukocyte antigen (HLA) region and the SARS-CoV-2 peptidome. By inversion imputation, we traced a reported association at 17q21.31 to a highly pleiotropic ∼0.9-Mb inversion polymorphism and characterized the potential effects of the inversion in detail. Our data, together with the 5th release of summary statistics from the COVID-19 Host Genetics Initiative, also identified a new locus at 19q13.33, including NAPSA, a gene which is expressed primarily in alveolar cells responsible for gas exchange in the lung.Andre Franke and David Ellinghaus were supported by a grant from the German Federal Ministry of Education and Research (01KI20197), Andre Franke, David Ellinghaus and Frauke Degenhardt were supported by the Deutsche Forschungsgemeinschaft Cluster of Excellence “Precision Medicine in Chronic Inflammation” (EXC2167). David Ellinghaus was supported by the German Federal Ministry of Education and Research (BMBF) within the framework of the Computational Life Sciences funding concept (CompLS grant 031L0165). David Ellinghaus, Karina Banasik and Søren Brunak acknowledge the Novo Nordisk Foundation (grant NNF14CC0001 and NNF17OC0027594). Tobias L. Lenz, Ana Teles and Onur Özer were funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), project numbers 279645989; 433116033; 437857095. Mareike Wendorff and Hesham ElAbd are supported by the German Research Foundation (DFG) through the Research Training Group 1743, "Genes, Environment and Inflammation". This project was supported by a Covid-19 grant from the German Federal Ministry of Education and Research (BMBF; ID: 01KI20197). Luca Valenti received funding from: Ricerca Finalizzata Ministero della Salute RF2016-02364358, Italian Ministry of Health ""CV PREVITAL – strategie di prevenzione primaria cardiovascolare primaria nella popolazione italiana; The European Union (EU) Programme Horizon 2020 (under grant agreement No. 777377) for the project LITMUS- and for the project ""REVEAL""; Fondazione IRCCS Ca' Granda ""Ricerca corrente"", Fondazione Sviluppo Ca' Granda ""Liver-BIBLE"" (PR-0391), Fondazione IRCCS Ca' Granda ""5permille"" ""COVID-19 Biobank"" (RC100017A). Andrea Biondi was supported by the grant from Fondazione Cariplo to Fondazione Tettamanti: "Biobanking of Covid-19 patient samples to support national and international research (Covid-Bank). This research was partly funded by a MIUR grant to the Department of Medical Sciences, under the program "Dipartimenti di Eccellenza 2018–2022". This study makes use of data generated by the GCAT-Genomes for Life. Cohort study of the Genomes of Catalonia, Fundació IGTP. IGTP is part of the CERCA Program / Generalitat de Catalunya. GCAT is supported by Acción de Dinamización del ISCIIIMINECO and the Ministry of Health of the Generalitat of Catalunya (ADE 10/00026); the Agència de Gestió d’Ajuts Universitaris i de Recerca (AGAUR) (2017-SGR 529). Marta Marquié received research funding from ant PI19/00335 Acción Estratégica en Salud, integrated in the Spanish National RDI Plan and financed by ISCIIISubdirección General de Evaluación and the Fondo Europeo de Desarrollo Regional (FEDER-Una manera de hacer Europa").Beatriz Cortes is supported by national grants PI18/01512. Xavier Farre is supported by VEIS project (001-P-001647) (cofunded by European Regional Development Fund (ERDF), “A way to build Europe”). Additional data included in this study was obtained in part by the COVICAT Study Group (Cohort Covid de Catalunya) supported by IsGlobal and IGTP, EIT COVID-19 Rapid Response activity 73A and SR20-01024 La Caixa Foundation. Antonio Julià and Sara Marsal were supported by the Spanish Ministry of Economy and Competitiveness (grant numbers: PSE-010000-2006-6 and IPT-010000-2010-36). Antonio Julià was also supported the by national grant PI17/00019 from the Acción Estratégica en Salud (ISCIII) and the FEDER. The Basque Biobank is a hospitalrelated platform that also involves all Osakidetza health centres, the Basque government's Department of Health and Onkologikoa, is operated by the Basque Foundation for Health Innovation and Research-BIOEF. Mario Cáceres received Grants BFU2016-77244-R and PID2019-107836RB-I00 funded by the Agencia Estatal de Investigación (AEI, Spain) and the European Regional Development Fund (FEDER, EU). Manuel Romero Gómez, Javier Ampuero Herrojo, Rocío Gallego Durán and Douglas Maya Miles are supported by the “Spanish Ministry of Economy, Innovation and Competition, the Instituto de Salud Carlos III” (PI19/01404, PI16/01842, PI19/00589, PI17/00535 and GLD19/00100), and by the Andalussian government (Proyectos Estratégicos-Fondos Feder PE-0451-2018, COVID-Premed, COVID GWAs). The position held by Itziar de Rojas Salarich is funded by grant FI20/00215, PFIS Contratos Predoctorales de Formación en Investigación en Salud. Enrique Calderón's team is supported by CIBER of Epidemiology and Public Health (CIBERESP), "Instituto de Salud Carlos III". Jan Cato Holter reports grants from Research Council of Norway grant no 312780 during the conduct of the study. Dr. Solligård: reports grants from Research Council of Norway grant no 312769. The BioMaterialBank Nord is supported by the German Center for Lung Research (DZL), Airway Research Center North (ARCN). The BioMaterialBank Nord is member of popgen 2.0 network (P2N). Philipp Koehler has received non-financial scientific grants from Miltenyi Biotec GmbH, Bergisch Gladbach, Germany, and the Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany. He is supported by the German Federal Ministry of Education and Research (BMBF).Oliver A. Cornely is supported by the German Federal Ministry of Research and Education and is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy – CECAD, EXC 2030 – 390661388. The COMRI cohort is funded by Technical University of Munich, Munich, Germany. Genotyping was performed by the Genotyping laboratory of Institute for Molecular Medicine Finland FIMM Technology Centre, University of Helsinki. This work was supported by grants of the Rolf M. Schwiete Stiftung, the Saarland University, BMBF and The States of Saarland and Lower Saxony. Kerstin U. Ludwig is supported by the German Research Foundation (DFG, LU-1944/3-1). Genotyping for the BoSCO study is funded by the Institute of Human Genetics, University Hospital Bonn. Frank Hanses was supported by the Bavarian State Ministry for Science and Arts. Part of the genotyping was supported by a grant to Alfredo Ramirez from the German Federal Ministry of Education and Research (BMBF, grant: 01ED1619A, European Alzheimer DNA BioBank, EADB) within the context of the EU Joint Programme – Neurodegenerative Disease Research (JPND). Additional funding was derived from the German Research Foundation (DFG) grant: RA 1971/6-1 to Alfredo Ramirez. Philip Rosenstiel is supported by the DFG (CCGA Sequencing Centre and DFG ExC2167 PMI and by SH state funds for COVID19 research). Florian Tran is supported by the Clinician Scientist Program of the Deutsche Forschungsgemeinschaft Cluster of Excellence “Precision Medicine in Chronic Inflammation” (EXC2167). Christoph Lange and Jan Heyckendorf are supported by the German Center for Infection Research (DZIF). Thorsen Brenner, Marc M Berger, Oliver Witzke und Anke Hinney are supported by the Stiftung Universitätsmedizin Essen. Marialbert Acosta-Herrera was supported by Juan de la Cierva Incorporacion program, grant IJC2018-035131-I funded by MCIN/AEI/10.13039/501100011033. Eva C Schulte is supported by the Deutsche Forschungsgemeinschaft (DFG; SCHU 2419/2-1).N

    Severe systemic cytomegalovirus infection in an immunocompetent patient outside the intensive care unit: a case report

    No full text
    Abstract Background Cytomegalovirus is responsible for an opportunistic infection that can be life threatening in immunocompromised patients, while it is usually mild or completely asymptomatic in immunocompetent subjects. In the recent years, however, some cases of severe cytomegalovirus infection in immunocompetent patients have been reported, showing this to be a less rare occurrence than previously reported. Case presentation We report the case of an 83-year-old man, admitted to our hospital for gastroenteritis, complicated by dehydration and severe prothrombin time prolongation due to oral anticoagulant therapy accumulation, who developed hospital-acquired pneumonia; neither of these illnesses responded to several lines of antibiotic therapy. All microbiologic tests were negative, except cytomegalovirus DNA test in blood, which showed high viral load. Antiviral therapy with ganciclovir was then started and a quick favourable response followed. A state of immunodeficiency was excluded, based on normal CD4 count and patient’s clinical history. Conclusion Different risk factors for severe cytomegalovirus disease in immunocompetent patients may exist, besides the ones already known, which could be responsible for severe cytomegalovirus disease in immunocompetent patients; thus, these patients should be tested for cytomegalovirus infection, if the clinical picture is compatible, to avoid delay in diagnosis and allow prompt start of specific therapy

    Wheat modelling in Morocco unexpectedly reveals predominance of photosynthesis versus leaf area expansion plant traits

    No full text
    Wheat is the staple food of 1.5 billion people worldwide and projected trends in global demand and productivity warn against food security risks over the next decades. Large-area crop monitoring and yield forecasting represent key issues to support agricultural policies, especially in developing countries. Among the existing monitoring systems, the most sophisticated are based on crop simulation models. Published reports of sensitivity analyses performed on different crop models show that parameters involved with leaf area expansion are often considered as the most relevant. Here we performed a multi-year spatially-distributed Monte Carlo-based sensitivity analysis of the models WOFOST and CropSyst for wheat simulation in Morocco. Due to the high number of sensitivity analyses to be performed, a 2-step procedure was adopted, with the Morris method used to identify parameters with a negligible effect and the Sobol' one applied on those remaining. Environmental and management information were derived from the European Commission MARS database. Our results show that parameters directly involved with photosynthesis played a major role: they explained more than 75% of the total output variance for CropSyst and more than 70% for WOFOST. Instead, parameters involved with the processes related to leaf area expansion resulted less relevant. The geographical patterns in terms of the relevance of parameters and processes shown by the same models under heterogeneous conditions could provide useful guidelines for driving breeders efforts towards specific plant traits, in the light of developing phenotypes suitable for specific conditions, e.g., varieties with a higher level of thermal adaptation in the Southern regions. This is the first time a multi-year spatially-distributed sensitivity analysis is carried out on two complex agro-ecological models.JRC.H.4-Monitoring Agricultural Resource

    iNKT cell phenotype and function in HIV-positive “Double Positive” (DP) and “Double Negative” (DN) patients.

    No full text
    <p>Gating strategy of flow cytometry analysis for staining of iNKT cell frequencies, phenotype and intracellular cytokine production in a representative HIV-positive individual (A); an example of staining for intracellular cytokines is also shown of a representative HIV-negative subject (B). PBMCs were gated on lymphocytes, and iNKT cells were visualized as CD3+, Vα24+ and CD1d-tetramer+. An example of CD161 surface staining is shown in the far right plot. iNKT frequency were comparable in DP and DN groups (C). iNKT cell phenotype was analyzed through the <i>ex vivo</i> expression of CD161 in DP (n = 10) and DN (n = 10) patients (D). DP subjects exhibited significantly higher levels of CD161 on iNKT cell surface compared to DN patients (p = .001). iNKT cell function was measured through the production of TNF and IFN-γ <i>ex vivo</i> (US) and following stimulation with PMA/ionomycin (n = 10 per group) (E, F) and α-GalCer (n = 5 per group) (G, H). Although DP and DN patients significantly increased TNF production upon PMA/ionomycin stimulation (p = .002 and p = .027 respectively), DP subjects showed higher TNF release both prior to (p = .049) and following PMA/ionomycin (E). Study groups exhibited similar frequencies of IFN-γ-producing iNKT cells both <i>ex vivo</i> and after stimulation with PMA/ionomycin (F). DP patients were characterized by significantly higher TNF release both prior to (p = .047) and following stimulation with α-GalCer (p = .021) (G). Similar results were obtained in terms of IFN-γ production, with a trend to higher cytokine production in DP subjects following iNKT-specific stimulation (p = .059) (H). FSC, Forward Scatter: SSC, Side Scatter. Each symbol represents an individual.</p

    Patient characteristics.

    No full text
    <p>DP: Double Positive; BD: Bone Disease; CD: Cardiovascular Disease; DN: Double Negative. MSM: Males Who Have Sex With Males. IVD: Intravenous Drug. HCV: Hepatitis C Virus. HAART: Highly Active Antiretroviral Therapy; PI: Protease Inhibitor; NNRTI: Non-Nucleoside Retroscriptase Inhibitor. DXA: Dual-energy X-ray absorptiometry. IMT: Intima Media Thickness. Data presented as: median (interquartile range, IQR) for continuous variables; absolute number (percentage) for categorical variables. p<0.05: <sup>a</sup>DP vs DN; <sup>b</sup>DP vs BD; <sup>c</sup>BD vs DN; <sup>d</sup>BD vs CD; <sup>e</sup>CD vs DN; <sup>f</sup>CD vs DP.</p><p>Patient characteristics.</p

    iNKT cell phenotype and function in HIV-positive “Bone Disease” (BD), “Cardiovascular Disease” (CD) and “Double Negative” (DN) patients.

    No full text
    <p>iNKT frequency was comparable among BD and DN groups (A). BD (n = 10) and DN (n = 10) showed similar CD161-expressing iNKT cell frequencies (B) and a significant increase in TNF production following PMA/ionomycin stimulation (p = .002 and p = .027 respectively). Despite a trend to higher spontaneous TNF release in BD patients (p = .075), comparable cytokine levels were recorded upon PMA/ionomycin (C). BD patients alone responded to PMA/ionomycin with significant IFN-γ production following stimulation (p = .0488) (D). Significantly higher TNF production was detected in BD subjects (p = .031) prior to α-GalCer stimulation. Upon α-GalCer stimulation, BD patients displayed a trend to significant increases in TNF release (p = .063), leading to higher cytokine levels in this population (p = .056) (E). No significant differences were noted in terms of IFN-γ production following α-GalCer, although BD patients tended to significant cytokine production (p = .063) (F). CD and DN showed comparable iNKT cell frequencies (G). CD (n = 10) and DN (n = 10) showed similar CD161-expressing iNKT cell frequencies (H). CD subjects showed higher TNF release both prior to (p = .005) and following stimulation with PMA/ionomycin (p = .029). Of note, DN patients alone responded to stimulation by significantly increasing TNF release from iNKT cells aspecific stimulation (p = .027) (I). In keeping with these results, the CD group displayed a trend to higher IFN-γ release after PMA/ionomycin stimulation (p = .052) (J). No statistical differences were noted between groups in terms of iNKT function following specific activation with α-GalCer (K, L). Horizontal lines indicate median values. Each symbol represents an individual.</p
    corecore