199 research outputs found

    Heat and entropy flows in Carnot groups

    Full text link
    We prove the correspondence between the solutions of the sub-elliptic heat equation in a Carnot group G\mathbb{G} and the gradient flows of the relative entropy functional in the Wasserstein space of probability measures on G\mathbb{G}. Our result completely answers a question left open in a previous paper by N. Juillet, where the same correspondence was proved for G=Hn\mathbb{G}=\mathbb{H}^n, the nn-dimensional Heisenberg group.Comment: 28 page

    The Standard Model of Particle Physics. Neutrino Oscillations

    Full text link
    The Standard Model (SM) of Particle Physics was tested to great precision by experiments at the highest energy colliders (LEP, Hera, Tevatron, SLAC). The only missing particle is the Higgs boson, which will be the first particle to be searched for at the new Large Hadron Collider (LHC) at CERN. The SM anticipated that there are 3 types of left handed neutrinos. Experiments on atmospheric and solar neutrinos (made in Japan, Italy, Canada, Russia and the US) have shown the existence of neutrino oscillations, which imply that neutrinos have very small mass differences and violate the conservation of individual leptonic numbers. Neutrino oscillations were verified in long baseline neutrino experiments (in Japan and in the USA); and cosmology has given reasonably precise indications on the sum of the neutrino masses. In this general lecture will be summarized some of the main properties of the SM and some of the main results obtained in the field and the experiments in preparation. Some of the main open questions will be briefly discussed.Comment: 6 pages, 13 EPS figures. Special lecture given at the 24th ICNTS Conference, 1-5 September 2008, Bologna, Italy. Changed reference

    Anisakis spp. Larvae in Deboned, in-Oil Fillets Made of Anchovies (Engraulis encrasicolus) and Sardines (Sardina pilchardus) Sold in EU Retailers

    Get PDF
    Sardina pilchardus and Engraulis encrasicolus are considered the principal target species for commercial fishing in Europe and are widely consumed as semipreserved products. Although they are considered shelf-stable products, if treatment is not correctly applied, their consumption may represent a public health risk in regard to anisakiasis and allergic reactions. Little is known about the prevalence of Anisakis spp. in ripened products. This study aimed to evaluate the presence of Anisakis spp. larvae in deboned, in-oil anchovy and sardine fillets marketed in the EU to assess the influence of processing techniques on the prevalence of larvae. Ninety semipreserved anchovy and sardine products deriving from the Mediterranean Sea or Atlantic Ocean were collected from different EU retailers and examined using chloropeptic digestion to evaluate the presence of larvae and identify them. Thirty nonviable Anisakid larvae—A. pegreffii (30%) and A. simplex (70%)—were found. The frequency of larvae was higher in anchovies (28.8%). The low frequency of parasites found proved that processing technologies can influence the presence of larvae in final products, but it is important that visual inspection is performed only by trained people. The sources of raw materials should be considered in the production flow chart

    Synthesis of gold nano-plates by mercaptide thermolysis in poly(vinyl acetate)

    Get PDF
    Triangular gold nano-plates have been synthesized by thermal decomposition of Au(I) dodecyl-mercaptide (i. e., AuSC12H25) dissolved in poly(vinyl acetate). Such special shape was achieved because of the ability of polymer side- groups (i. e., the acetate groups) to be selectively absorbed on the most acid faces of the growing gold nanocrystals, thus inhibiting crystal development along these crystallographic directions. Nano-plates had an average edge length of ca. 30 nm and a thickness of a few nanometers

    Development and demonstration of next generation technology for Nb_3Sn accelerator magnets with lower cost, improved performance uniformity, and higher operating point in the 12-14 T range

    Full text link
    The scope of the proposal outlined in this white paper is the development and demonstration of the technology needed for next generation of Nb_3Sn accelerator magnets in the 12-14 T range. The main goal is to cut magnet cold-mass cost by a factor 2 or higher with respect to the Nb_3Sn magnets produced by the US Accelerator Upgrade Project (AUP) for the High-Luminosity Large Hadron Collider (HL-LHC). This goal will be achieved by significant reduction of labor hours, higher operating point, and improved performance uniformity. A key factor will be automation that will be achieved through industry involvement and benefitting from the experience gained in US national laboratories through the production of the AUP magnets. This partnership will enable the development of a technology that will be easily transferable to industry for mid- and large-scale production of Nb_3Sn accelerator magnets in the 12-14 T range. This step is essential to enable next generation of colliders such as the FNAL-proposed Muon Collider, FCC and other HEP hadron colliders. This is a Directed R&D where direction is given by the field range and industry involvement for high-automation and industry-ready technology. The plan includes ten milestones, to be achieved in 6-8 years at the cost of 5-7 $M/year.Comment: White Paper for Snowmass 2022, 8 pages, 2 tables, 1 figur

    A Metallurgical Inspection Method to Assess the Damage in Performance-Limiting Nb3Sn Accelerator Magnet Coils

    Full text link
    The design and production of Nb3Sn-based dipole and quadrupole magnets is critical for the realization of the High-Luminosity Large Hadron Collider (HL-LHC) at the European Organization for Nuclear Research (CERN). Nb3Sn superconducting coils are aimed at enhancing the bending and focusing strengths of accelerator magnets for HL-LHC and beyond. Due to the brittle nature of Nb3Sn, the coil fabrication steps are very challenging and require very careful QA/QC. Flaws in the Nb3Sn filaments may lead to quenches, and eventually, performance limitation below nominal during magnet testing. A novel inspection method, including advanced non-destructive and destructive techniques, was developed to explore the root-causes of quenches occurring in performance-limiting coils. The most relevant results obtained for MQXF coils through this innovative inspection method are presented. This approach allows for precise assessment of the physical events associated to the quenches experienced b y magnet coils, mainly occurring under the form of damaged strands with transversely broken sub-elements. Coil-slice preparation, micro-optical observations of transverse and longitudinal cross-sections, and a deep etching technique of copper will be illustrated in the present work, with a focus on the results achieved for a CERN coil from a non-conforming quadrupole magnet prototype, and two coils fabricated in the US, in the framework of the Accelerator Upgrade Project (AUP) collaboration, from two different non-conforming quadrupole magnets, respectively. The results obtained through the proposed inspection method will be illustrated.Comment: Applied Superconductivity Conference 202

    An annotated checklist of macrofungi in broadleaf Mediterranean forests (NW Italy)

    Get PDF
    Three different broadleaf Mediterranean forests, each characterized by the dominance of Castanea sativa, Quercus cerris, and Fagus sylvatica, respectively, were intensively surveyed over 3 consecutive years to record a list of macrofungi. A total of 5,065 sporomata and 300 species (seven Ascomycota and 293 Basidiomycota) belonging to 18 orders, 59 families, and 117 genera were recorded. The ecology, community composition, and geographic distribution of the identified species are discussed and new records for Italy are also provided

    Biofunctionalization of 3D printed collagen with bevacizumab-loaded microparticles targeting pathological angiogenesis

    Get PDF
    Pathological angiogenesis is a crucial attribute of several chronic diseases such as cancer, age-related macular degeneration, and osteoarthritis (OA). In the case of OA, pathological angiogenesis mediated by the vascular endothelial growth factor (VEGF), among other factors, contributes to cartilage degeneration and to implants rejection. In line with this, the use of the anti-VEGF bevacizumab (BVZ) has been shown to prevent OA progression and support cartilage regeneration. The aim of this work was to functionalize a medical grade collagen with poly (lactic-co-glycolic acid) (PLGA) microparticles containing BVZ via three-dimensional (3D) printing to target pathological angiogenesis. First, the effect of several formulation parameters on the encapsulation and release of BVZ from PLGA microparticles was studied. Then, the anti-angiogenic activity of released BVZ was tested in a 3D cell model. The 3D printability of the microparticle-loaded collagen ink was tested by evaluating the shape fidelity of 3D printed structures. Results showed that the release and the encapsulation efficiency of BVZ could be tuned as a function of several formulation parameters. In addition, the released BVZ was observed to reduce vascularization by human umbilical vein endothelial cells. Finally, the collagen ink with embedded BVZ microparticles was successfully printed, leading to shape-stable meniscus-, nose- and auricle-like structures. Taken altogether, we defined the conditions for the successful combination of BVZ-loaded microparticles with the 3D printing of a medical grade collagen to target pathological angiogenesisThis project has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No 814444 (MEFISTO). The authors thank mAbxience-GH Genhelix for the kind donation of Bevacizumab (Avastin¼) and Geistlich Pharma AG for providing the medical grade collagen. AA acknowledges funding from “la Caixa” Foundation (ID 100010434) with a fellowship code LCF/BQ/PR22/11920003. RL acknowledges funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No. 949806, VOLUME-BIO). RL and JM acknowledge funding from the Dutch Artritis Foundation (LLP-12 and LLP-22)S

    Production of Aluminum Stabilized Superconducting Cable for the Mu2e Transport Solenoid

    Get PDF
    The Fermilab Mu2e experiment [1] , [2] , currently under construction at Fermilab, has the goal of measuring the rare process of direct muon to electron conversion in the field of a nucleus. The experiment features three large superconducting solenoids: the production solenoid (PS), the transport solenoid (TS), and the detector solenoid (DS). The TS is an "S-shaped" solenoid that sits in between the PS and the DS producing a magnetic field ranging between 2.5 and 2.0 T. This paper describes the various steps that led to the successful procurement of over 740 km of superconducting wire and 44 km of Al-stabilized Rutherford cable needed to build the 52 coils that constitute the Mu2e TS cold mass. The main cable properties and results of electrical and mechanical test campaigns are summarized and discussed. Critical current measurements of the Al-stabilized cables are presented and compared to expected critical current values as measured on extracted strands from the final cables after chemical etching of the aluminum stabilizer. A robust and reliable approach to cable welding is presented, and the effect of cable bending on the transport current is also investigated and presented
    • 

    corecore