2,744 research outputs found

    Epigenetic reprogramming of human embryonic stem cells into skeletal muscle cells and generation of contractile myospheres

    Get PDF
    Direct generation of a homogeneous population of skeletal myoblasts from human embryonic stem cells (hESCs) and formation of three-dimensional contractile structures for disease modeling in vitro are current challenges in regenerative medicine. Previous studies reported on the generation of myoblasts from ESC-derived embryoid bodies (EB), but not from undifferentiated ESCs, indicating the requirement for mesodermal transition to promote skeletal myogenesis. Here, we show that selective absence of the SWI/SNF component BAF60C (encoded by SMARCD3) confers on hESCs resistance to MyoD-mediated activation of skeletal myogenesis. Forced expression of BAF60C enables MyoD to directly activate skeletal myogenesis in hESCs by instructing MyoD positioning and allowing chromatin remodeling at target genes. BAF60C/MyoD-expressing hESCs are epigenetically committed myogenic progenitors, which bypass the mesodermal requirement and, when cultured as floating clusters, give rise to contractile three-dimensional myospheres composed of skeletal myotubes. These results identify BAF60C as a key epigenetic determinant of hESC commitment to the myogenic lineage and establish the molecular basis for the generation of hESC-derived myospheres exploitable for 'disease in a dish' models of muscular physiology and dysfunction

    Could Hair-Lichens of High-Elevation Forests Help Detect the Impact of Global Change in the Alps?

    Get PDF
    Climate change and the anthropic emission of pollutants are likely to have an accelerated impact in high-elevation mountain areas. This phenomenon could have negative consequences on alpine habitats and for species of conservation in relative proximity to dense human populations. This premise implies that the crucial task is in the early detection of warning signals of ecological changes. In alpine landscapes, high-elevation forests provide a unique environment for taking full advantage of epiphytic lichens as sensitive indicators of climate change and air pollution. This literature review is intended to provide a starting point for developing practical biomonitoring tools that elucidate the potential of hair-lichens, associated with high-elevation forests, as ecological indicators of global change in the European Alps. We found support for the practical use of hair-lichens to detect the impact of climate change and nitrogen pollution in high-elevation forest habitats. The use of these organisms as ecological indicators presents an opportunity to expand monitoring activities and develop predictive tools that support decisions on how to mitigate the effects of global change in the Alps

    FFF-based high-throughput sequence shortlisting to support the development of aptamer-based analytical strategies

    Get PDF
    Aptamers are biomimetic receptors that are increasingly exploited for the development of optical and electrochemical aptasensors. They are selected in vitro by the SELEX (Systematic Evolution of Ligands by Exponential Enrichment) procedure, but although they are promising recognition elements, for their reliable applicability for analytical purposes, one cannot ignore sample components that cause matrix effects. This particularly applies when different SELEX-selected aptamers and related truncated sequences are available for a certain target, and the choice of the aptamer should be driven by the specific downstream application. In this context, the present work aimed at investigating the potentialities of asymmetrical flow field-flow fractionation (AF4) with UV detection for the development of a screening method of a large number of anti-lysozyme aptamers towards lysozyme, including randomized sequences and an interfering agent (serum albumin). The possibility to work in native conditions and selectively monitor the evolution of untagged aptamer signal as a result of aptamer-protein binding makes the devised method effective as a strategy for shortlisting the most promising aptamers both in terms of affinity and in terms of selectivity, to support subsequent development of aptamer-based analytical devices

    Dynamics of cellular states of fibro-adipogenic progenitors during myogenesis and muscular dystrophy

    Get PDF
    Fibro-adipogenic progenitors (FAPs) are currently defined by their anatomical position, expression of non-specific membrane-associated proteins, and ability to adopt multiple lineages in vitro. Gene expression analysis at single-cell level reveals that FAPs undergo dynamic transitions through a spectrum of cell states that can be identified by differential expression levels of Tie2 and Vcam1. Different patterns of Vcam1-negative Tie2highor Tie2lowand Tie2low/Vcam1-expressing FAPs are detected during neonatal myogenesis, response to acute injury and Duchenne Muscular Dystrophy (DMD). RNA\ua0sequencing analysis identified cell state-specific transcriptional profiles that predict functional interactions with satellite and inflammatory cells. In particular, Vcam1-expressing FAPs, which exhibit a pro-fibrotic expression profile, are transiently activated by acute injury in concomitance with the inflammatory response. Aberrant persistence of Vcam1-expressing FAPs is detected in DMD muscles or upon macrophage depletion, and is associated with muscle fibrosis, thereby revealing how disruption of inflammation-regulated FAPs dynamics leads to a pathogenic outcome

    Antioxidant and Functional Features of Pre-Fermented Ingredients Obtained by the Fermentation of Milling By-Products

    Get PDF
    The use of milling by-products as ingredients in food formulations has increased gradually over the past years, due to their well-recognized health properties. Fermentation performed with selected microbial strains or microbial consortia is the most promising way to reduce antinutritional factors of cereals and bran, while increasing their nutritional and functional properties. This work, developed within the BBI project INGREEN, was aimed to study the functional, nutritional and technological features of a pre-fermented ingredient obtained from the fermentation of a mixture of rye bran and wheat germ by a selected microbial consortium composed of yeasts (Kazachstania unispora and Kazachstania servazii) and lactic acid bacteria (Latilactobacillus curvatus) using as reference the unfermented mixture and the same mixture fermented by a baker’s yeast. The selected microbial consortium improved the complexity of the volatile molecules such as acids, alcohols and esters. A better retention of color parameters was maintained compared to the product fermented by a baker’s yeast. In addition, the fermentation by the selected consortium showed a significant increase in short chain fatty acids (more than 5-fold), antioxidant activity (22– 24%), total phenol content (53–71%), bioactive peptides (39–52%), a reduction of 20–28% in phytic acid content and an increase in prebiotic activity not only compared to the unfermented product but also compared to the preferment obtained with a baker’s yeast. Overall, the fermentation by the selected microbial consortium can be considered a valuable way to valorize milling by-products and promote their exploitation as food ingredients

    How Quercus ilex L. saplings face combined salt and ozone stress: a transcriptome analysis

    Get PDF
    Background: Similar to other urban trees, holm oaks (Quercus ilex L.) provide a physiological, ecological and social service in the urban environment, since they remove atmospheric pollution. However, the urban environment has several abiotic factors that negatively influence plant life, which are further exacerbated due to climate change, especially in the Mediterranean area. Among these abiotic factors, increased uptake of Na + and Cl − usually occurs in trees in the urban ecosystem; moreover, an excess of the tropospheric ozone concentration in Mediterranean cities further affects plant growth and survival. Here, we produced and annotated a de novo leaf transcriptome of Q. ilex as well as transcripts over- or under-expressed after a single episode of O3 (80 nl l-1, 5 h), a salt treatment (150mM for 15 days) or a combination of these treatments, mimicking a situation that plants commonly face, especially in urban environments. Results: Salinity dramatically changed the profile of expressed transcripts, while the short O3 pulse had less effect on the transcript profile. However, the short O3 pulse had a very strong effect in inducing over- or under-expression of some genes in plants coping with soil salinity. Many differentially regulated genes were related to stress sensing and signalling, cell wall remodelling, ROS sensing and scavenging, photosynthesis and to sugar and lipid metabolism. Most differentially expressed transcripts revealed here are in accordance with a previous report on Q. ilex at the physiological and biochemical levels, even though the expression profiles were overall more striking than those found at the biochemical and physiological levels. Conclusions: We produced for the first time a reference transcriptome for Q. ilex, and performed gene expression analysis for this species when subjected to salt, ozone and a combination of the two. The comparison of gene expression between the combined salt + ozone treatment and salt or ozone alone showed that even though many differentially expressed genes overlap all treatments, combined stress triggered a unique response in terms of gene expression modification. The obtained results represent a useful tool for studies aiming to investigate the effects of environmental stresses in urban-adapted tree species

    Spatially resolved transcriptomics reveals innervation-responsive functional clusters in skeletal muscle

    Get PDF
    Striated muscle is a highly organized structure composed of well-defined anatomical domains with integrated but distinct assignments. So far, the lack of a direct correlation between tissue architecture and gene expression has limited our understanding of how each unit responds to physio-pathologic contexts. Here, we show how the combined use of spatially resolved transcriptomics and immunofluorescence can bridge this gap by enabling the unbiased identification of such domains and the characterization of their response to external perturbations. Using a spatiotemporal analysis, we follow changes in the transcriptome of specific domains in muscle in a model of denervation. Furthermore, our approach enables us to identify the spatial distribution and nerve dependence of atrophic signaling pathway and polyamine metabolism to glycolytic fibers. Indeed, we demonstrate that perturbations of polyamine pathway can affect muscle function. Our dataset serves as a resource for future studies of the mechanisms underlying skeletal muscle homeostasis and innervation

    Morphological, nutraceutical and sensorial properties of cultivated Fragaria vesca L. berries: influence of genotype, plant age, fertilization treatment on the overall fruit quality

    Get PDF
    Sucrose, glucose, fructose, citric, malic, ascorbic (AA) and dehydroascorbic (DHAA) acids, total polyphenols (TP), radical scavenging activity (RSA), physicochemical and sensorial properties were determined on F. vesca Alpine (ALP) and Regina delle Valli (RDV) berries in relation to plant age and fertilisation treatment (Effective Microorganism Technology, EMT vs. traditional fertilization, TFT). ALP berries had a sum of AA and DHAA about 20% lower and TPs about 30% higher than RDV. Plant age affected most physicochemical parameters, sugars and organic acids, as well as sensorial appreciation, being them generally higher in berries produced in the second year. TPs were not affected by plant age. EMT produced an increase of 50%, 70% and 20% for TP, organic acids and RSA, respectively. Although changes in berry quality are expected with plant age, EMT cultivation of ALP should be preferred to the growth of RDV under TFT, to obtain fruits more valuable from the nutraceutical viewpoint

    Experimental Engineering of Arbitrary Qudit States with Discrete-Time Quantum Walks

    Get PDF
    The capability to generate and manipulate quantum states in high-dimensional Hilbert spaces is a crucial step for the development of quantum technologies, from quantum communication to quantum computation. One-dimensional quantum walk dynamics represents a valid tool in the task of engineering arbitrary quantum states. Here we affirm such potential in a linear-optics platform that realizes discrete-time quantum walks in the orbital angular momentum degree of freedom of photons. Different classes of relevant qudit states in a six-dimensional space are prepared and measured, confirming the feasibility of the protocol. Our results represent a further investigation of quantum walk dynamics in photonics platforms, paving the way for the use of such a quantum state-engineering toolbox for a large range of applications.Comment: 6+4 pages, 3+1 figure

    Hubungan antara persepsi iklim sekolah dengan school engagement siswa Madrasah

    Get PDF
    Tujuan dari penelitian ini adalah untuk mengetahui hubungan antara persepsi iklim sekolah dengan school engagement. Penelitian ini merupakan penelelitian kuantitatif berjenis korelasi. Teknik pengumpulan data dalam penelitian ini berupa skala persepsi iklim sekolah dan skala school engagement. Subjek penelitian dari penelitian ini berjumlah 127 siswa dari jumlah populasi sebanyak 240 siswa. Teknik pengambilan sampel menggunakan teknik probability sampling. Teknis analisis data yang digunakan adalah analisis product moment dengan diperoleh harga koefisien korelasi sebesar 0, 517 dengan taraf kepercayaan 0.01 (1%), dengan signifikansi 0.000, karena signifikansi 0.000< 0.05, maka Ha diterima. Hasil penelitian ini menunjukkan bahwa ada hubungan antara persepsi iklim sekolah dengan school engagement siswa Madrasah Tsanawiyah Negeri Tarik
    • …
    corecore