170 research outputs found

    Isolation of new thermophiles from compost and their selection for the conversion of lignocellulosic biomass

    Get PDF
    Composting, often described as nature’s way of recycling, is a self-heating, aerobic, solid-phase process, during which organic waste materials are biologically degraded into an extremely useful humus-like substance by means of various microorganisms. The main protagonists of this process are thermophilic microorganisms and their enzymes. In this work the compost was used as a starting material for the isolation of thermophilic microorganisms to verify the compost biodiversity; subsequently, the identification of enzymatic activities able to convert lignocellulosic biomass wastes to obtain products with several potential biotechnological applications in different types of sectors, was performed. The samplings were carried out in a different times of thermophilic phase of composting process, at the “Experimental Center of Composting” (CESCO), Cilento National Park, Laurino, Salerno, in which the residue of oil mills were used, and at the “Experimentation Center of Castel Volturno” (DISSPA), in which the compost derived from cowpat and straw. Two different approaches were used: isolation after enrichment (Method A) or isolation on selective agar plates method with xylan and carboxymethyl cellulose (0.2%, w/v) as substrates (Method B). The purification of isolates was then performed using the repeated serial dilution technique followed by re-streaking on solid medium. Two new Aeribacillus species, Aeribacillus strains N.8 and N.6B and two different strains of a new Geobacillus species, Geobacillus strains N.3BX and N.3BC, were isolated from CESCO. They showed an optimal temperature growth between 50 and 70°C in the pH values of 8.0-9.0. They were able to grow on medium containing up to 9% (w/v) NaCl with an optimum at 6-7 % (w/v) NaCl. The enzymatic activities of these new strains were studied in all three cellular compartments (extracellular, cytosolic and cell-bound fractions); in particular, Aeribacillus strain N.6B produced inulinase, pectinase and gelzan-lyase activity and strain N.8 showed gelzan-lyase activity. While, Geobacillus strains N.3BX and N.3BC produced xylanase, β-xylosidase and arabinofuranosidase activity. From the “Experimental Center of Composting” of Cilento National Park, it was also isolated a thermophilic microorganism named strain N.3TH2; based on the 16S rRNA gene sequence it possessed 100% of homology with Bacillus licheniformis. Strain N.3TH2 produced cellulase activity in the extracellular and cytosolic fractions. In particular, extracellular cellulase, that showed an optimal temperature activity of 60°C at pH 5.6, was studied. Moreover, six different strains, that fall within the genus Bacillus, were isolated from DISSPA. Their optimal temperature ranged between 50 and 60°C in the pH values of 7.0 at 5% (w/v) NaCl. They produced several enzymatic activities, such as xylanase, cellulase, amylase, protease, lypase and collagenase

    Merging Continuous Flow Technology, Photochemistry and Biocatalysis to Streamline Steroid Synthesis

    Get PDF
    Since their structural elucidation in 1935, the introduction and substitution of functional groups and the modification of the steroidal scaffolds have been a fertile ground of research for synthetic and medicinal chemists. The discovery of steroids with hormonal and pharmacological activity has stimulated tremendous efforts to the development of highly selective and efficient synthetic procedures. Despite the progress made, steroid chemistry remains challenging and the preparation of steroidal compounds of pharmaceutical interests and in clinical practice, often requires long and elaborated synthesis. In recent years, a new impetus in the field came with the advent of enabling chemical technologies, such as continuous flow chemistry, which are exploited to overcome problems that arise from batch synthesis. Although it is still a niche sector, the use of flow technology in steroid synthesis and functionalization holds the premise to empower methodology development and to provide innovative tactics also for many hitherto uncharted chemistries. In this review, scientific contributions are reported and discussed in terms of flow set-up and advantages offered concerning process efficiency, optimization, waste minimization, safety improvement, easy scale-up and costs. We also highlight the main challenges, key improvements and the future trajectory in the application of continuous flow chemistry and its implementation to different disciplines such as photochemistry and biocatalysis with the ultimate goal of streamlining steroid synthesis

    Progress and challenges of selective Farnesoid X Receptor modulation.

    Get PDF
    Bile acids are amphipathic molecules that were previously known to serve as fat solubilizers in the intestine in postprandial conditions. In the last two decades, bile acids have been recognized as signaling molecules regulating energy metabolism pathways via, amongst others, the farnesoid X receptor (FXR). Upon bile acid activation, FXR controls expression of genes involved in bile acid, lipid, glucose and amino acid metabolism. In addition, FXR activation has been shown to limit the inflammatory response. The central role of FXR in various aspects of metabolism and inflammation makes FXR an attractive drug target for several diseases, such as obesity, metabolic syndrome, non-alcoholic steatohepatitis, cholestasis and chronic inflammatory diseases of the liver and intestine. However, most of the currently available compounds impact on all discovered FXR-mediated functions and may have, on top of beneficial effects, undesired biological actions depending on the disease. Therefore, research efforts are increasingly focused on the development of selective FXR modulators, i.e. selective bile acid receptor modulators (SBARMs), aimed at limiting the potential side-effects of conventional full FXR agonists upon chronic treatment. Here, we review the rationale for the design of SBARMs comprising dissociation between metabolic and inflammatory signaling, gene-selective and tissue-specific targeting. We discuss the potential structural mechanisms underlying the binding properties of dissociating ligands of FXR in light of ongoing efforts on the generation of dissociated ligands for otxher nuclear receptors, as well as their pharmacological and therapeutic potential

    Garcinoic acid prevents β-amyloid (Aβ) deposition in the mouse brain

    Get PDF
    Garcinoic acid (GA or δ-T3-13'COOH), is a natural vitamin E metabolite that has preliminarily been identified as a modulator of nuclear receptors involved in β-amyloid (Aβ) metabolism and progression of Alzheimer's disease (AD). In this study, we investigated GA's effects on Aβ oligomer formation and deposition. Specifically, we compared them with those of other vitamin E analogs and the soy isoflavone genistein, a natural agonist of peroxisome proliferator-activated receptor γ (PPARγ) that has therapeutic potential for managing AD. GA significantly reduced Aβ aggregation and accumulation in mouse cortical astrocytes. Similarly to genistein, GA up-regulated PPARγ expression and apolipoprotein E (ApoE) efflux in these cells with an efficacy that was comparable with that of its metabolic precursor δ-tocotrienol and higher than those of α-tocopherol metabolites. Unlike for genistein and the other vitamin E compounds, the GA-induced restoration of ApoE efflux was not affected by pharmacological inhibition of PPARγ activity, and specific activation of pregnane X receptor (PXR) was observed together with ApoE and multidrug resistance protein 1 (MDR1) membrane transporter up-regulation in both the mouse astrocytes and brain tissue. These effects of GA were associated with reduced Aβ deposition in the brain of TgCRND8 mice, a transgenic AD model. In conclusion, GA holds potential for preventing Aβ oligomerization and deposition in the brain. The mechanistic aspects of GA's properties appear to be distinct from those of other vitamin E metabolites and of genistein

    Bile Acid Recognition by NAPE-PLD

    Full text link
    The membrane-associated enzyme NAPE-PLD (N-acyl phosphatidylethanolamine specific-phospholipase D) generates the endogenous cannabinoid arachidonylethanolamide and other lipid signaling amides, including oleoylethanolamide and palmitoylethanolamide. These bioactive molecules play important roles in several physiological pathways including stress and pain response, appetite and lifespan. Recently, we reported the crystal structure of human NAPE-PLD and discovered specific binding sites for the bile acid deoxycholic acid. In this study we demonstrate that in the presence of this secondary bile acid, the stiffness of the protein measured by elastic neutron scattering increases, and NAPE-PLD results ~7 times faster to catalyze the hydrolysis of the more unsaturated substrate N-arachidonyl-phosphatidylethanolamine, compared with N-palmitoyl-phosphatidylethanolamine. Chenodeoxycholic acid and glyco- or tauro-dihydroxy conjugates can also bind to NAPE-PLD and drive its activation. The only natural monohydroxy bile acid, lithocholic acid, shows an affinity of ~20 μM and acts instead as a reversible inhibitor (IC(50) ≈ 68 μM). Overall, these findings provide important insights into the allosteric regulation of the enzyme mediated by bile acid cofactors, and reveal that NAPE-PLD responds primarily to the number and position of their hydroxyl groups

    Nat Metab.

    Get PDF
    Bile acids (BAs) are signalling molecules that mediate various cellular responses in both physiological and pathological processes. Several studies report that BAs can be detected in the brain1, yet their physiological role in the central nervous system is still largely unknown. Here we show that postprandial BAs can reach the brain and activate a negative-feedback loop controlling satiety in response to physiological feeding via TGR5, a G-protein-coupled receptor activated by multiple conjugated and unconjugated BAs2 and an established regulator of peripheral metabolism3,4,5,6,7,8. Notably, peripheral or central administration of a BA mix or a TGR5-specific BA mimetic (INT-777) exerted an anorexigenic effect in wild-type mice, while whole-body, neuron-specific or agouti-related peptide neuronal TGR5 deletion caused a significant increase in food intake. Accordingly, orexigenic peptide expression and secretion were reduced after short-term TGR5 activation. In vitro studies demonstrated that activation of the Rho–ROCK–actin-remodelling pathway decreases orexigenic agouti-related peptide/neuropeptide Y (AgRP/NPY) release in a TGR5-dependent manner. Taken together, these data identify a signalling cascade by which BAs exert acute effects at the transition between fasting and feeding and prime the switch towards satiety, unveiling a previously unrecognized role of physiological feedback mediated by BAs in the central nervous system.Développment d'une infrastructure française distribuée coordonnéeLa signalisation des acides biliaires dans le cerveau et son rôle dans le contrôle métaboliqueInnovations instrumentales et procédurales en psychopathologie expérimentale chez le rongeu

    Pharmacological Applications of Bile Acids and Their Derivatives in the Treatment of Metabolic Syndrome

    Get PDF
    Apart from well-known functions of bile acids in digestion and solubilization of lipophilic nutrients and drugs in the small intestine, the emerging evidence from the past two decades identified the role of bile acids as signaling, endocrine molecules that regulate the glucose, lipid, and energy metabolism through complex and intertwined pathways that are largely mediated by activation of nuclear receptor farnesoid X receptor (FXR) and cell surface G protein-coupled receptor 1, TGR5 (also known as GPBAR1). Interactions of bile acids with the gut microbiota that result in the altered composition of circulating and intestinal bile acids pool, gut microbiota composition and modified signaling pathways, are further extending the complexity of biological functions of these steroid derivatives. Thus, bile acids signaling pathways have become attractive targets for the treatment of various metabolic diseases and metabolic syndrome opening the new potential avenue in their treatment. In addition, there is a significant effort to unveil some specific properties of bile acids relevant to their intrinsic potency and selectivity for particular receptors and to design novel modulators of these receptors with improved pharmacokinetic and pharmacodynamic profiles. This resulted in synthesis of few semi-synthetic bile acids derivatives such as 6a-ethyl-chenodeoxycholic acid (obeticholic acid, OCA), norursodeoxycholic acid (norUDCA), and 12-monoketocholic acid (12-MKC) that are proven to have positive effect in metabolic and hepato-biliary disorders. This review presents an overview of the current knowledge related to bile acids implications in glucose, lipid and energy metabolism, as well as a potential application of bile acids in metabolic syndrome treatment with future perspectives

    ChemInform Abstract: BF 3

    No full text

    A Mlp-Based Digit And Uppercase Characters Recognition System

    No full text
    corecore