12 research outputs found

    Crosstalk between Iron Metabolism and Erythropoiesis

    Get PDF
    Iron metabolism and erythropoiesis are inextricably linked. The majority of iron extracted from circulation daily is used for hemoglobin synthesis. In the last 15 years, major advances have been made in understanding the pathways regulating iron metabolism. Hepcidin is a key regulator of iron absorption and recycling and is itself regulated by erythropoiesis. While several viable candidates have been proposed, elucidating the “erythroid regulator” of hepcidin continues to generate significant experimental activity in the field. Although the mechanism responsible for sensing iron demand for erythropoiesis is still incompletely understood, evaluating diseases in which disordered erythropoiesis and/or iron metabolism are showcased has resulted in a more robust appreciation of potential candidates coordinated erythroid iron demand with regulators of iron supply. We present data drawn from four different conditions—iron deficiency, congenital hypotransferrinemia, beta-thalassemia, and hereditary hemochromatosis—both in human and non-human models of disease, together suggesting that erythroid iron demand exerts a stronger influence on circulating iron supply than systemic iron stores. Greater understanding of the interplay between the key factors involved in the regulation of iron metabolism and erythropoiesis will help develop more effective therapies for disorders of iron overload, iron deficiency, and hemoglobin synthesis

    Minihepcidins improve ineffective erythropoiesis and splenomegaly in a new mouse model of adult β-thalassemia major

    Get PDF
    Minihepcidins are hepcidin agonists that have been previously shown to reverse iron overload and improve erythropoiesis in mice affected by non-transfusion-dependent thalassemia. Given the extreme anemia that occurred with the previous model of transfusion-dependent thalassemia, that model was inadequate for investigating whether minihepcidins can improve red blood cell quality, lifespan and ineffective erythropoiesis. To overcome this limitation, we generated a new murine model of transfusion-dependent thalassemia with severe anemia and splenomegaly, but sufficient red cells and hemoglobin production to test the effect of minihepcidins. Furthermore, this new model demonstrates cardiac iron overload for the first time. In the absence of transfusions, minihepcidins improved red blood cell morphology and lifespan as well as ineffective erythropoiesis. Administration of a minihepcidin in combination with chronic red blood cell transfusion further improved the ineffective erythropoiesis and splenomegaly and reversed cardiac iron overload. These studies indicate that drugs such as minihepcidins have therapeutic potential for patients with transfusion-dependent thalassemia

    Decreasing TfR1 expression reverses anemia and hepcidin suppression in β-thalassemic mice

    Get PDF
    Iron availability for erythropoiesis and its dysregulation in β-thalassemia are incompletely understood. We previously demonstrated that exogenous apotransferrin leads to more effective erythropoiesis, decreasing erythroferrone (ERFE) and derepressing hepcidin in β-thalassemic mice. Transferrin-bound iron binding to transferrin receptor 1 (TfR1) is essential for cellular iron delivery during erythropoiesis. We hypothesize that apotransferrin's effect is mediated via decreased TfR1 expression and evaluate TfR1 expression in β-thalassemic mice in vivo and in vitro with and without added apotransferrin. Our findings demonstrate that β-thalassemic erythroid precursors overexpress TfR1, an effect that can be reversed by the administration of exogenous apotransferrin. In vitro experiments demonstrate that apotransferrin inhibits TfR1 expression independent of erythropoietin- and iron-related signaling, decreases TfR1 partitioning to reticulocytes during enucleation, and enhances enucleation of defective β-thalassemic erythroid precursors. These findings strongly suggest that overexpressed TfR1 may play a regulatory role contributing to iron overload and anemia in β-thalassemic mice. To evaluate further, we crossed TfR1+/- mice, themselves exhibiting iron-restricted erythropoiesis with increased hepcidin, with β-thalassemic mice. Resultant double-heterozygote mice demonstrate long-term improvement in ineffective erythropoiesis, hepcidin derepression, and increased erythroid enucleation in relation to β-thalassemic mice. Our data demonstrate for the first time that TfR1+/- haploinsufficiency reverses iron overload specifically in β-thalassemic erythroid precursors. Taken together, decreasing TfR1 expression during β-thalassemic erythropoiesis, either directly via induced haploinsufficiency or via exogenous apotransferrin, decreases ineffective erythropoiesis and provides an endogenous mechanism to upregulate hepcidin, leading to sustained iron-restricted erythropoiesis and preventing systemic iron overload in β-thalassemic mice

    Vitamin D Receptor Controls Cell Stemness in Acute Myeloid Leukemia and in Normal Bone Marrow.

    Get PDF
    Vitamin D (VD) is a known differentiating agent, but the role of VD receptor (VDR) is still incompletely described in acute myeloid leukemia (AML), whose treatment is based mostly on antimitotic chemotherapy. Here, we present an unexpected role of VDR in normal hematopoiesis and in leukemogenesis. Limited VDR expression is associated with impaired myeloid progenitor differentiation and is a new prognostic factor in AML. In mice, the lack of Vdr results in increased numbers of hematopoietic and leukemia stem cells and quiescent hematopoietic stem cells. In addition, malignant transformation of Vdr-/- cells results in myeloid differentiation block and increases self-renewal. Vdr promoter is methylated in AML as in CD34+ cells, and demethylating agents induce VDR expression. Association of VDR agonists with hypomethylating agents promotes leukemia stem cell exhaustion and decreases tumor burden in AML mouse models. Thus, Vdr functions as a regulator of stem cell homeostasis and leukemic propagation

    Vitamin D Receptor Controls Cell Sternness in Acute Myeloid Leukemia and in Normal Bone Marrow

    No full text
    Vitamin D (VD) is a known differentiating agent, but the role of VD receptor (VDR) is still incompletely described in acute myeloid leukemia (AML), whose treatment is based mostly on antimitotic chemotherapy. Here, we present an unexpected role of VDR in normal hematopoiesis and in leukemogenesis. Limited VDR expression is associated with impaired myeloid progenitor differentiation and is a new prognostic factor in AML. In mice, the lack of Vdr results in increased numbers of hematopoietic and leukemia stem cells and quiescent hematopoietic stem cells. In addition, malignant transformation of Vdr-/- cells results in myeloid differentiation block and increases self-renewal. Vdr promoter is methylated in AML as in CD34+ cells, and demethylating agents induce VDR expression. Association of VDR agonists with hypomethylating agents promotes leukemia stem cell exhaustion and decreases tumor burden in AML mouse models. Thus, Vdr functions as a regulator of stem cell homeostasis and leukemic propagation.status: publishe

    Vitamin D Receptor Controls Cell Stemness in Acute Myeloid Leukemia and in Normal Bone Marrow

    No full text
    International audienceVitamin D (VD) is a known differentiating agent, but the role of VD receptor (VDR) is still incompletely described in acute myeloid leukemia (AML), whose treatment is based mostly on antimitotic chemotherapy. Here, we present an unexpected role of VDR in normal hematopoiesis and in leukemogenesis. Limited VDR expression is associated with impaired myeloid progenitor differentiation and is a new prognostic factor in AML. In mice, the lack of Vdr results in increased numbers of hematopoietic and leukemia stem cells and quiescent hematopoietic stem cells. In addition, malignant transformation of Vdr-/- cells results in myeloid differentiation block and increases self-renewal. Vdr promoter is methylated in AML as in CD34+ cells, and demethylating agents induce VDR expression. Association of VDR agonists with hypomethylating agents promotes leukemia stem cell exhaustion and decreases tumor burden in AML mouse models. Thus, Vdr functions as a regulator of stem cell homeostasis and leukemic propagation

    Decreasing TfR1 expression reverses anemia and hepcidin suppression in β-thalassemic mice

    No full text
    Iron availability for erythropoiesis and its dysregulation in β-thalassemia are incompletely understood. We previously demonstrated that exogenous apotransferrin leads to more effective erythropoiesis, decreasing erythroferrone (ERFE) and derepressing hepcidin in β-thalassemic mice. Transferrin-bound iron binding to transferrin receptor 1 (TfR1) is essential for cellular iron delivery during erythropoiesis. We hypothesize that apotransferrin’s effect is mediated via decreased TfR1 expression and evaluate TfR1 expression in β-thalassemic mice in vivo and in vitro with and without added apotransferrin. Our findings demonstrate that β-thalassemic erythroid precursors overexpress TfR1, an effect that can be reversed by the administration of exogenous apotransferrin. In vitro experiments demonstrate that apotransferrin inhibits TfR1 expression independent of erythropoietin- and iron-related signaling, decreases TfR1 partitioning to reticulocytes during enucleation, and enhances enucleation of defective β-thalassemic erythroid precursors. These findings strongly suggest that overexpressed TfR1 may play a regulatory role contributing to iron overload and anemia in β-thalassemic mice. To evaluate further, we crossed TfR1(+/−) mice, themselves exhibiting iron-restricted erythropoiesis with increased hepcidin, with β-thalassemic mice. Resultant double-heterozygote mice demonstrate long-term improvement in ineffective erythropoiesis, hepcidin derepression, and increased erythroid enucleation in relation to β-thalassemic mice. Our data demonstrate for the first time that TfR1(+/−) haploinsufficiency reverses iron overload specifically in β-thalassemic erythroid precursors. Taken together, decreasing TfR1 expression during β-thalassemic erythropoiesis, either directly via induced haploinsufficiency or via exogenous apotransferrin, decreases ineffective erythropoiesis and provides an endogenous mechanism to upregulate hepcidin, leading to sustained iron-restricted erythropoiesis and preventing systemic iron overload in β-thalassemic mice
    corecore