132 research outputs found

    Scattering of slow-light gap solitons with charges in a two-level medium

    Full text link
    The Maxwell-Bloch system describes a quantum two-level medium interacting with a classical electromagnetic field by mediation of the the population density. This population density variation is a purely quantum effect which is actually at the very origin of nonlinearity. The resulting nonlinear coupling possesses particularly interesting consequences at the resonance (when the frequency of the excitation is close to the transition frequency of the two-level medium) as e.g. slow-light gap solitons that result from the nonlinear instability of the evanescent wave at the boundary. As nonlinearity couples the different polarizations of the electromagnetic field, the slow-light gap soliton is shown to experience effective scattering whith charges in the medium, allowing it for instance to be trapped or reflected. This scattering process is understood qualitatively as being governed by a nonlinear Schroedinger model in an external potential related to the charges (the electrostatic permanent background component of the field).Comment: RevTex, 14 pages with 5 figures, to appear in J. Phys. A: Math. Theo

    Negotiating different disciplinary discourses: biology students’ ritualized and exploratory participation in mathematical modeling activities

    Get PDF
    Non-mathematics specialists’ competence and confidence in mathematics in their disciplines have been highlighted as in need of improvement. We report from a collaborative, developmental research project which explores the conjecture that greater integration of mathematics and biology in biology study programs, for example through engaging students with Mathematical Modeling (MM) activities, is one way to achieve this improvement. We examine the evolution of 12 first-semester biology students’ mathematical discourse as they engage with such activities in four sessions which ran concurrently with their mandatory mathematics course and were taught by a mathematician with extensive experience with MM. The sessions involved brief introductions to different aspects of MM, followed by small-group work on tasks set in biological contexts. Our analyses use the theory of commognition to investigate the tensions between ritualized and exploratory participation in the students’ MM activity. We focus particularly on a quintessential routine in MM, assumption building: we trace attempts which start from ritualized engagement in the shape of “guesswork” and evolve into more productively exploratory formulations. We also identify signs of persistent commognitive conflict in the students’ activity, both intra-mathematical (concerning what is meant by a “math task”) and extra-mathematical (concerning what constitutes a plausible solution to the tasks in a biological sense). Our analyses show evidence of the fluid interplay between ritualized and exploratory engagement in the students’ discursive activity and contribute towards what we see as a much needed distancing from operationalization of the commognitive constructs of ritual and exploration as an unhelpfully dichotomous binary

    A cycle-consistent adversarial network for brain PET partial volume correction without prior anatomical information

    Get PDF
    Purpose: Partial volume effect (PVE) is a consequence of the limited spatial resolution of PET scanners. PVE can cause the intensity values of a particular voxel to be underestimated or overestimated due to the effect of surrounding tracer uptake. We propose a novel partial volume correction (PVC) technique to overcome the adverse effects of PVE on PET images. Methods: Two hundred and twelve clinical brain PET scans, including 50 18F-Fluorodeoxyglucose (18F-FDG), 50 18F-Flortaucipir, 36 18F-Flutemetamol, and 76 18F-FluoroDOPA, and their corresponding T1-weighted MR images were enrolled in this study. The Iterative Yang technique was used for PVC as a reference or surrogate of the ground truth for evaluation. A cycle-consistent adversarial network (CycleGAN) was trained to directly map non-PVC PET images to PVC PET images. Quantitative analysis using various metrics, including structural similarity index (SSIM), root mean squared error (RMSE), and peak signal-to-noise ratio (PSNR), was performed. Furthermore, voxel-wise and region-wise-based correlations of activity concentration between the predicted and reference images were evaluated through joint histogram and Bland and Altman analysis. In addition, radiomic analysis was performed by calculating 20 radiomic features within 83 brain regions. Finally, a voxel-wise two-sample t-test was used to compare the predicted PVC PET images with reference PVC images for each radiotracer. Results: The Bland and Altman analysis showed the largest and smallest variance for 18F-FDG (95% CI: − 0.29, + 0.33 SUV, mean = 0.02 SUV) and 18F-Flutemetamol (95% CI: − 0.26, + 0.24 SUV, mean = − 0.01 SUV), respectively. The PSNR was lowest (29.64 ± 1.13 dB) for 18F-FDG and highest (36.01 ± 3.26 dB) for 18F-Flutemetamol. The smallest and largest SSIM were achieved for 18F-FDG (0.93 ± 0.01) and 18F-Flutemetamol (0.97 ± 0.01), respectively. The average relative error for the kurtosis radiomic feature was 3.32%, 9.39%, 4.17%, and 4.55%, while it was 4.74%, 8.80%, 7.27%, and 6.81% for NGLDM_contrast feature for 18F-Flutemetamol, 18F-FluoroDOPA, 18F-FDG, and 18F-Flortaucipir, respectively. Conclusion: An end-to-end CycleGAN PVC method was developed and evaluated. Our model generates PVC images from the original non-PVC PET images without requiring additional anatomical information, such as MRI or CT. Our model eliminates the need for accurate registration or segmentation or PET scanner system response characterization. In addition, no assumptions regarding anatomical structure size, homogeneity, boundary, or background level are required. © 2023, The Author(s)

    The modulation of adult neuroplasticity is involved in the mood-improving actions of atypical antipsychotics in an animal model of depression

    Get PDF
    Depression is a prevalent psychiatric disorder with an increasing impact in global public health. However, a large proportion of patients treated with currently available antidepressant drugs fail to achieve remission. Recently, antipsychotic drugs have received approval for the treatment of antidepressant-resistant forms of major depression. The modulation of adult neuroplasticity, namely hippocampal neurogenesis and neuronal remodeling, has been considered to have a key role in the therapeutic effects of antidepressants. However, the impact of antipsychotic drugs on these neuroplastic mechanisms remains largely unexplored. In this study, an unpredictable chronic mild stress protocol was used to induce a depressive-like phenotype in rats. In the last 3 weeks of stress exposure, animals were treated with two different antipsychotics: haloperidol (a classical antipsychotic) and clozapine (an atypical antipsychotic). We demonstrated that clozapine improved both measures of depressive-like behavior (behavior despair and anhedonia), whereas haloperidol aggravated learned helplessness in the forced-swimming test and behavior flexibility in a cognitive task. Importantly, an upregulation of adult neurogenesis and neuronal survival was observed in animals treated with clozapine, whereas haloperidol promoted a downregulation of these processes. Furthermore, clozapine was able to re-establish the stress-induced impairments in neuronal structure and gene expression in the hippocampus and prefrontal cortex. These results demonstrate the modulation of adult neuroplasticity by antipsychotics in an animal model of depression, revealing that the atypical antipsychotic drug clozapine reverts the behavioral effects of chronic stress by improving adult neurogenesis, cell survival and neuronal reorganization.This work was co-funded by the Life and Health Sciences Research Institute (ICVS), and Northern Portugal Regional Operational Programme (NORTE 2020), under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (FEDER) (Projects NORTE-01-0145-FEDER-000013 and NORTE-01-0145-FEDER-000023). This work has been also funded by FEDER funds, through the Competitiveness Factors Operational Programme (COMPETE) and by National funds, through the FCT, under the scope of the project POCI-01-0145-FEDER-007038. We thank LuĂ­s Martins and Ana Lima for the technical assistanceinfo:eu-repo/semantics/publishedVersio

    Bipolar disorders

    Get PDF
    Bipolar disorder is characterized by (hypo)manic episodes and depressive episodes which alternate with euthymic periods. It causes serious disability with poor outcome, increased suicidality risk, and significant societal costs. This chapter describes the findings of the PET/SPECT research efforts and the current ideas on the pathophysiology of bipolar disorder. First, the cerebral blood flow and cerebral metabolism findings in the prefrontal cortex, limbic system, subcortical structures, and other brain regions are discussed, followed by an overview of the corticolimbic theory of mood disorders that explains these observations. Second, the neurotransmitter studies are discussed. The serotonin transporter alterations are described, and the variation in study results is explained, followed by an overview of the results of the various dopamine receptor and transporter molecules studies, taking into account also the relation to psychosis. Third, a concise overview is given of dominant bipolar disorder pathophysiological models, proposing starting points for future molecular imaging studies. Finally, the most important conclusions are summarized, followed by remarks about the observed molecular imaging study designs specific for bipolar disorder.</p

    The effects of Δ9-tetrahydrocannabinol on the dopamine system

    Get PDF
    Δ(9)-tetrahydrocannabinol (THC), the main psychoactive ingredient in cannabis, is a pressing concern to global mental health. Patterns of use are changing drastically due to legalisation, availability of synthetic analogues (‘spice’), cannavaping and aggrandizements in the purported therapeutic effects of cannabis. Many of THC’s reinforcing effects are mediated by the dopamine system. Due to complex cannabinoid-dopamine interactions there is conflicting evidence from human and animal research fields. Acute THC causes increased dopamine release and neuron activity, whilst long-term use is associated with blunting of the dopamine system. Future research must examine the long-term and developmental dopaminergic effects of the drug
    • 

    corecore