120 research outputs found

    The ALPINE-ALMA [C II] survey: Star-formation-driven outflows and circumgalactic enrichment in the early Universe

    Get PDF
    We study the efficiency of galactic feedback in the early Universe by stacking the [C II] 158 ÎŒm emission in a large sample of normal star-forming galaxies at 4   4. From the stacking analysis of the datacubes, we find that the combined [C II] core emission (|v|< 200 km s⁻Âč) of the higher-SFR galaxies is extended on physical sizes of ∌30 kpc (diameter scale), well beyond the analogous [C II] core emission of lower-SFR galaxies and the stacked far-infrared continuum. The detection of such extended metal-enriched gas, likely tracing circumgalactic gas enriched by past outflows, corroborates previous similar studies, confirming that baryon cycle and gas exchanges with the circumgalactic medium are at work in normal star-forming galaxies already at early epochs

    The ALPINE-ALMA [C II] survey: Star-formation-driven outflows and circumgalactic enrichment in the early Universe

    Get PDF
    We study the efficiency of galactic feedback in the early Universe by stacking the [C II] 158 ÎŒm emission in a large sample of normal star-forming galaxies at 4   4. From the stacking analysis of the datacubes, we find that the combined [C II] core emission (|v|< 200 km s⁻Âč) of the higher-SFR galaxies is extended on physical sizes of ∌30 kpc (diameter scale), well beyond the analogous [C II] core emission of lower-SFR galaxies and the stacked far-infrared continuum. The detection of such extended metal-enriched gas, likely tracing circumgalactic gas enriched by past outflows, corroborates previous similar studies, confirming that baryon cycle and gas exchanges with the circumgalactic medium are at work in normal star-forming galaxies already at early epochs

    Scaling relations and baryonic cycling in local star-forming galaxies: II. Gas content and star-formation efficiency

    Full text link
    Assessments of the cold-gas reservoir in galaxies are a cornerstone for understanding star-formation processes and the role of feedback and baryonic cycling in galaxy evolution. Here we exploit a sample of 392 galaxies (dubbed MAGMA, Metallicity and Gas for Mass Assembly), presented in a recent paper, to quantify molecular and atomic gas properties across a broad range in stellar mass, Mstar, from ∌107−1011\sim 10^7 - 10^{11} Msun. First, we find the metallicity (ZZ) dependence of alpha_CO to be shallower than previous estimates, with alpha_CO∝(Z/Z⊙)−1.55\propto (Z/Z_\odot)^{-1.55}. Second, molecular gas mass MH2 is found to be strongly correlated with Mstar and star-formation rate (SFR), enabling predictions of MH2 good to within ∌\sim0.2 dex. The behavior of atomic gas mass MHI in MAGMA scaling relations suggests that it may be a third, independent variable that encapsulates information about the circumgalactic environment and gas accretion. If Mgas is considered to depend on MHI, together with Mstar and SFR, we obtain a relation that predicts Mgas to within ∌\sim0.05 dex. Finally, the analysis of depletion times and the scaling of MHI/Mstar and MH2/Mstar over three different mass bins suggests that the partition of gas and the regulation of star formation through gas content depends on the mass regime. Dwarf galaxies tend to be overwhelmed by (HI) accretion, while for galaxies in the intermediate Mstar "gas-equilibrium" bin, star formation proceeds apace with gas availability. In the most massive "gas-poor, bimodality" galaxies, HI does not apparently participate in star formation, although it generally dominates in mass over H2. Our results confirm that atomic gas plays a key role in baryonic cycling, and is a fundamental ingredient for current and future star formation, especially in dwarf galaxies. (abridged for arXiv)Comment: 22 pages, 15 figures, 2 appendices, accepted for publication in Astronomy & Astrophysic

    Scaling relations and baryonic cycling in local star-forming galaxies: II. Gas content and star-formation efficiency

    Get PDF
    Assessments of the cold-gas reservoir in galaxies are a cornerstone for understanding star-formation processes and the role of feedback and baryonic cycling in galaxy evolution. Here we exploit a sample of 392 galaxies (dubbed MAGMA, Metallicity and Gas for Mass Assembly), presented in a recent paper, to quantify molecular and atomic gas properties across a broad range in stellar mass, Mstar, from ∌107 - 1011 M⊙. First, we find the metallicity (Z) dependence of the conversion factor for CO luminosity to molecular H2 mass αCO to be shallower than previous estimates, with αCO∝ (Z/Z⊙)-1.55. Second, molecular gas mass MH2 is found to be strongly correlated with Mstar and star-formation rate (SFR), enabling predictions of MH2 good to within ∌0.2 dex; analogous relations for atomic gas mass MHI and total gas mass Mgas are less accurate, ∌0.4 dex and ∌0.3 dex, respectively. Indeed, the behavior of atomic gas mass MHI in MAGMA scaling relations suggests that it may be a third, independent variable that encapsulates information about the circumgalactic environment and gas accretion. If Mgas is considered to depend on MHI, together with Mstar and SFR, we obtain a relation that predicts Mgas to within ∌0.05 dex. Finally, the analysis of depletion times and the scaling of MHI/Mstar and MH2/Mstar over three different mass bins suggests that the partition of gas and the regulation of star formation through gas content depends on the mass regime. Dwarf galaxies (Mstar∝ 3 × 109 M⊙) tend to be overwhelmed by (H » I) accretion, and despite short τH2 (and thus presumably high star-formation efficiency), star formation is unable to keep up with the gas supply. For galaxies in the intermediate Mstar "gas-equilibrium"bin (3 × 109 M⊙ â‰Č Mstar â‰Č 3 × 1010 M⊙), star formation proceeds apace with gas availability, and H I and H2 are both proportional to SFR. In the most massive "gas-poor, bimodality"regime (Mstar ≳ 3 × 1010 M⊙), H I does not apparently participate in star formation, although it generally dominates in mass over H2. Our results confirm that atomic gas plays a key role in baryonic cycling, and is a fundamental ingredient for current and future star formation, especially in dwarf galaxies

    Evolution of dwarf galaxies hosting GW150914-like events

    Get PDF
    Here we present a detailed analysis of the properties and evolution of different dwarf galaxies, candidates to host the coalescence of black hole binary systems generating GW150914-like events. By adopting a novel theoretical framework coupling the binary population synthesis code SEBA with the Galaxy formationmodel GAMESH, we can investigate the detailed evolution of these objects in awell-resolved cosmological volume of 4 cMpc, having aMilkyWay (MW)- like galaxy forming at its centre. We identify three classes of interesting candidate galaxies: MW progenitors, dwarf satellites, and dwarf galaxies evolving in isolation. We find that (i) despite differences in individual histories and specific environments the candidates reduce to only nine representative galaxies; (ii) among them, 3c44 per cent merge into the MW halo progenitors by the redshift of the expected signal, while the remaining dwarfs are found as isolated or as satellites of the MW and their evolution is strongly shaped by both peculiar dynamical history and environmental feedback; (iii) a stringent condition for the environments where GW150914-like binaries can form comes from a combination of the accretion history of their dark matter haloes and the radiative feedback in the high-redshift universe; and (iv) by comparing with the observed catalogues from the DGS and ALLSMOG surveys we find two observed dwarfs respecting the properties predicted by our model. We finally note how the present analysis opens the possibility to build future strategies for host galaxy identification

    The ALPINE-ALMA [C II] survey : star-formation-driven outflows and circumgalactic enrichment in the early Universe

    Get PDF
    We study the efficiency of galactic feedback in the early Universe by stacking the [C II] 158 ÎŒm emission in a large sample of normal star-forming galaxies at 4  &lt;   z  &lt;   6 from the ALMA Large Program to INvestigate [C II] at Early times (ALPINE) survey. Searching for typical signatures of outflows in the high-velocity tails of the stacked [C II] profile, we observe (i) deviations from a single-component Gaussian model in the combined residuals and (ii) broad emission in the stacked [C II] spectrum, with velocities of |v|â‰Č 500 km s-1. The significance of these features increases when stacking the subset of galaxies with star formation rates (SFRs) higher than the median (SFRmed  =  25 M⊙ yr-1), thus confirming their star-formation-driven nature. The estimated mass outflow rates are comparable to the SFRs, yielding mass-loading factors of the order of unity (similarly to local star-forming galaxies), suggesting that star-formation-driven feedback may play a lesser role in quenching galaxies at z  &gt;   4. From the stacking analysis of the datacubes, we find that the combined [C II] core emission (|v|&lt; 200 km s-1) of the higher-SFR galaxies is extended on physical sizes of ∌30 kpc (diameter scale), well beyond the analogous [C II] core emission of lower-SFR galaxies and the stacked far-infrared continuum. The detection of such extended metal-enriched gas, likely tracing circumgalactic gas enriched by past outflows, corroborates previous similar studies, confirming that baryon cycle and gas exchanges with the circumgalactic medium are at work in normal star-forming galaxies already at early epochs

    The ALPINE-ALMA [CII] survey: Star-formation-driven outflows and circumgalactic enrichment in the early Universe

    Get PDF
    We study the efficiency of galactic feedback in the early Universe by stacking the [C II] 158 um emission in a large sample of normal star-forming galaxies at 4 < z < 6 from the ALMA Large Program to INvestigate [C II] at Early times (ALPINE) survey. Searching for typical signatures of outflows in the high-velocity tails of the stacked [C II] profile, we observe (i) deviations from a single-component Gaussian model in the combined residuals and (ii) broad emission in the stacked [C II] spectrum, with velocities of |v|<~ 500 km/s. The significance of these features increases when stacking the subset of galaxies with star formation rates (SFRs) higher than the median (SFRmed = 25 Msun/yr), thus confirming their star-formation-driven nature. The estimated mass outflow rates are comparable to the SFRs, yielding mass-loading factors of the order of unity (similarly to local star-forming galaxies), suggesting that star-formation-driven feedback may play a lesser role in quenching galaxies at z > 4. From the stacking analysis of the datacubes, we find that the combined [C II] core emission (|v|< 200 km/s) of the higher-SFR galaxies is extended on physical sizes of ~ 30 kpc (diameter scale), well beyond the analogous [C II] core emission of lower-SFR galaxies and the stacked far-infrared continuum. The detection of such extended metal-enriched gas, likely tracing circumgalactic gas enriched by past outflows, corroborates previous similar studies, confirming that baryon cycle and gas exchanges with the circumgalactic medium are at work in normal star-forming galaxies already at early epochs

    The WISSH quasars project: VIII. Outflows and metals in the circum-galactic medium around the hyper-luminous z 3c 3.6 quasar J1538+08

    Get PDF
    Context. In recent years, Ly\u3b1 nebulae have been routinely detected around high redshift, radio-quiet quasars thanks to the advent of the highly sensitive integral field spectrographs. Constraining the physical properties of the Ly\u3b1 nebulae is crucial for a full understanding of the circum-galactic medium (CGM). The CGM acts both as a repository for intergalactic and galactic baryons as well as a venue of feeding and feedback processes. The most luminous quasars are privileged test-beds to study these processes, given their large ionising fluxes and dense CGM environments in which they are expected to be embedded. Aims. We aim to characterise the rest-frame ultraviolet (UV) emission lines in the CGM around a hyper-luminous, broad emission line, radio-quiet quasar at z 3c 3.6, which exhibits powerful outflows at both nuclear and host galaxy scales. Methods. We analyse VLT/MUSE observations of the quasar J1538+08 (Lbol = 6 7 1047 erg s-1), and we performed a search for extended UV emission lines to characterise its morphology, emissivity, kinematics, and metal content. Results. We report the discovery of a very luminous ( 3c2 7 1044 erg s-1), giant Ly\u3b1 nebula and a likely associated extended (75 kpc) CIV nebula. The Ly\u3b1 nebula emission exhibits moderate blueshift ( 3c440 km s-1) compared to the quasar systemic redshift and a large average velocity dispersion (\u3c3\u304v 3c700 km s-1) across the nebula, while the CIV nebula shows average velocity dispersion of \u3c3\u304v 3c350 km s-1. The Ly\u3b1 line profile exhibits a significant asymmetry towards negative velocity values at 20-30 kpc south of the quasar and is well parametrised by the following two Gaussian components: a narrow (\u3c3 3c 470 km s-1) systemic one plus a broad (\u3c3 3c 1200 km s-1), blueshifted ( 3c1500 km s-1) one. Conclusions. Our analysis of the MUSE observation of J1538+08 reveals metal-enriched CGM around this hyper-luminous quasar. Furthermore, our detection of blueshifted emission in the emission profile of the Ly\u3b1 nebula suggests that powerful nuclear outflows can propagate through the CGM over tens of kiloparsecs

    ALPINE: A Large Survey to Understand Teenage Galaxies

    Get PDF
    A multiwavelength study of galaxies is important to understand their formation and evolution. Only in the recent past, thanks to the Atacama Large (Sub) Millimeter Array (ALMA), were we able to study the far-infrared (IR) properties of galaxies at high redshifts. In this article, we summarize recent research highlights and their significance to our understanding of early galaxy evolution from the ALPINE survey, a large program with ALMA to observe the dust continuum and 158 ”m C+ emission of normal star-forming galaxies at z = 4–6. Combined with ancillary data at UV through near-IR wavelengths, ALPINE provides the currently largest multiwavelength sample of post-reionization galaxies and has advanced our understanding of (i) the demographics of C+ emission; (ii) the relation of star formation and C+ emission; (iii) the gas content; (iv) outflows and enrichment of the intergalactic medium; and (v) the kinematics, emergence of disks, and merger rates in galaxies at z &gt; 4. ALPINE builds the basis for more detailed measurements with the next generation of telescopes, and places itself as an important post-reionization baseline sample to allow a continuous study of galaxies over 13 billion years of cosmic time
    • 

    corecore