152 research outputs found

    Models of Passive and Reactive Tracer Motion: an Application of Ito Calculus

    Full text link
    By means of Ito calculus it is possible to find, in a straight-forward way, the analytical solution to some equations related to the passive tracer transport problem in a velocity field that obeys the multidimensional Burgers equation and to a simple model of reactive tracer motion.Comment: revised version 7 pages, Latex, to appear as a letter to J. of Physics

    A non-perturbative renormalization group study of the stochastic Navier--Stokes equation

    Full text link
    We study the renormalization group flow of the average action of the stochastic Navier--Stokes equation with power-law forcing. Using Galilean invariance we introduce a non-perturbative approximation adapted to the zero frequency sector of the theory in the parametric range of the H\"older exponent 4−2 Δ4-2\,\varepsilon of the forcing where real-space local interactions are relevant. In any spatial dimension dd, we observe the convergence of the resulting renormalization group flow to a unique fixed point which yields a kinetic energy spectrum scaling in agreement with canonical dimension analysis. Kolmogorov's -5/3 law is, thus, recovered for Δ=2\varepsilon=2 as also predicted by perturbative renormalization. At variance with the perturbative prediction, the -5/3 law emerges in the presence of a \emph{saturation} in the Δ\varepsilon-dependence of the scaling dimension of the eddy diffusivity at Δ=3/2\varepsilon=3/2 when, according to perturbative renormalization, the velocity field becomes infra-red relevant.Comment: RevTeX, 18 pages, 5 figures. Minor changes and new discussion

    Pressure and intermittency in passive vector turbulence

    Full text link
    We investigate the scaling properties a model of passive vector turbulence with pressure and in the presence of a large-scale anisotropy. The leading scaling exponents of the structure functions are proven to be anomalous. The anisotropic exponents are organized in hierarchical families growing without bound with the degree of anisotropy. Nonlocality produces poles in the inertial-range dynamics corresponding to the dimensional scaling solution. The increase with the P\'{e}clet number of hyperskewness and higher odd-dimensional ratios signals the persistence of anisotropy effects also in the inertial range.Comment: 4 pages, 1 figur

    Passive scalar turbulence in high dimensions

    Full text link
    Exploiting a Lagrangian strategy we present a numerical study for both perturbative and nonperturbative regions of the Kraichnan advection model. The major result is the numerical assessment of the first-order 1/d1/d-expansion by M. Chertkov, G. Falkovich, I. Kolokolov and V. Lebedev ({\it Phys. Rev. E}, {\bf 52}, 4924 (1995)) for the fourth-order scalar structure function in the limit of high dimensions dd's. %Two values of the velocity scaling exponent Ο\xi have been considered: %Ο=0.8\xi=0.8 and Ο=0.6\xi=0.6. In the first case, the perturbative regime %takes place at d∌30d\sim 30, while in the second at d∌25d\sim 25, %in agreement with the fact that the relevant small parameter %of the theory is ∝1/(d(2−Ο))\propto 1/(d (2-\xi)). In addition to the perturbative results, the behavior of the anomaly for the sixth-order structure functions {\it vs} the velocity scaling exponent, Ο\xi, is investigated and the resulting behavior discussed.Comment: 4 pages, Latex, 4 figure

    Manifestation of anisotropy persistence in the hierarchies of MHD scaling exponents

    Full text link
    The first example of a turbulent system where the failure of the hypothesis of small-scale isotropy restoration is detectable both in the `flattening' of the inertial-range scaling exponent hierarchy, and in the behavior of odd-order dimensionless ratios, e.g., skewness and hyperskewness, is presented. Specifically, within the kinematic approximation in magnetohydrodynamical turbulence, we show that for compressible flows, the isotropic contribution to the scaling of magnetic correlation functions and the first anisotropic ones may become practically indistinguishable. Moreover, skewness factor now diverges as the P\'eclet number goes to infinity, a further indication of small-scale anisotropy.Comment: 4 pages Latex, 1 figur

    On the strong anomalous diffusion

    Full text link
    The superdiffusion behavior, i.e. ∌t2Îœ \sim t^{2 \nu}, with Îœ>1/2\nu > 1/2, in general is not completely characherized by a unique exponent. We study some systems exhibiting strong anomalous diffusion, i.e. ∌tqÎœ(q) \sim t^{q \nu(q)} where Îœ(2)>1/2\nu(2)>1/2 and qÎœ(q)q \nu(q) is not a linear function of qq. This feature is different from the weak superdiffusion regime, i.e. Îœ(q)=const>1/2\nu(q)=const > 1/2, as in random shear flows. The strong anomalous diffusion can be generated by nontrivial chaotic dynamics, e.g. Lagrangian motion in 2d2d time-dependent incompressible velocity fields, 2d2d symplectic maps and 1d1d intermittent maps. Typically the function qÎœ(q)q \nu(q) is piecewise linear. This corresponds to two mechanisms: a weak anomalous diffusion for the typical events and a ballistic transport for the rare excursions. In order to have strong anomalous diffusion one needs a violation of the hypothesis of the central limit theorem, this happens only in a very narrow region of the control parameters space.Comment: 27 pages, 14 figure

    Neuromuscular excitability changes produced by sustained voluntary contraction and response to mexiletine in myotonia congenita

    Get PDF
    Objective: To investigate the cause of transient weakness in myotonia congenita (MC) and the mechanism of action of mexiletine in reducing weakness. Methods: The changes in neuromuscular excitability produced by 1. min of maximal voluntary contractions (MVC) were measured on the amplitude of compound muscle action potentials (CMAP) in two patients with either recessive or dominant MC, compared to control values obtained in 20 healthy subjects. Measurements were performed again in MC patients after mexiletine therapy. Results: Transient reduction in maximal CMAP amplitude lasting several minutes after MVC was evident in MC patients, whereas no change was observed in controls. Mexiletine efficiently reduced this transient CMAP depression in both patients. Discussion: Transient CMAP depression following sustained MVC may represent the electrophysiological correlate of the weakness clinically experienced by the patients. In MC, the low chloride conductance could induce self-sustaining action potentials after MVC, determining progressive membrane depolarization and a loss of excitability of muscle fibers, thus resulting in transient paresis. Mexiletine may prevent conduction block due to excessive membrane depolarization, thus reducing the transient CMAP depression following sustained MVC

    On the canonically invariant calculation of Maslov indices

    Get PDF
    After a short review of various ways to calculate the Maslov index appearing in semiclassical Gutzwiller type trace formulae, we discuss a coordinate-independent and canonically invariant formulation recently proposed by A Sugita (2000, 2001). We give explicit formulae for its ingredients and test them numerically for periodic orbits in several Hamiltonian systems with mixed dynamics. We demonstrate how the Maslov indices and their ingredients can be useful in the classification of periodic orbits in complicated bifurcation scenarios, for instance in a novel sequence of seven orbits born out of a tangent bifurcation in the H\'enon-Heiles system.Comment: LaTeX, 13 figures, 3 tables, submitted to J. Phys.

    Eddy diffusivity of quasi-neutrally-buoyant inertial particles

    Get PDF
    We investigate the large-scale transport properties of quasi-neutrally-buoyant inertial particles carried by incompressible zero-mean periodic or steady ergodic flows. We show howto compute large-scale indicators such as the inertial-particle terminal velocity and eddy diffusivity from first principles in a perturbative expansion around the limit of added-mass factor close to unity. Physically, this limit corresponds to the case where the mass density of the particles is constant and close in value to the mass density of the fluid, which is also constant. Our approach differs from the usual over-damped expansion inasmuch as we do not assume a separation of time scales between thermalization and small-scale convection effects. For a general flow in the class of incompressible zero-mean periodic velocity fields, we derive closed-form cell equations for the auxiliary quantities determining the terminal velocity and effective diffusivity. In the special case of parallel flows these equations admit explicit analytic solution. We use parallel flows to show that our approach sheds light onto the behavior of terminal velocity and effective diffusivity for Stokes numbers of the order of unity.Peer reviewe
    • 

    corecore