Abstract

Exploiting a Lagrangian strategy we present a numerical study for both perturbative and nonperturbative regions of the Kraichnan advection model. The major result is the numerical assessment of the first-order 1/d1/d-expansion by M. Chertkov, G. Falkovich, I. Kolokolov and V. Lebedev ({\it Phys. Rev. E}, {\bf 52}, 4924 (1995)) for the fourth-order scalar structure function in the limit of high dimensions dd's. %Two values of the velocity scaling exponent ξ\xi have been considered: %ξ=0.8\xi=0.8 and ξ=0.6\xi=0.6. In the first case, the perturbative regime %takes place at d30d\sim 30, while in the second at d25d\sim 25, %in agreement with the fact that the relevant small parameter %of the theory is 1/(d(2ξ))\propto 1/(d (2-\xi)). In addition to the perturbative results, the behavior of the anomaly for the sixth-order structure functions {\it vs} the velocity scaling exponent, ξ\xi, is investigated and the resulting behavior discussed.Comment: 4 pages, Latex, 4 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions