12 research outputs found

    Intermediate Progenitor Cohorts Differentially Generate Cortical Layers and Require Tbr2 for Timely Acquisition of Neuronal Subtype Identity

    Get PDF
    Intermediate progenitors (IPs) amplify the production of pyramidal neurons, but their role in selective genesis of cortical layers or neuronal subtypes remains unclear. Using genetic lineage tracing in mice, we find that IPs destined to produce upper cortical layers first appear early in corticogenesis, by embryonic day 11.5. During later corticogenesis, IP laminar fates are progressively limited to upper layers. We examined the role of Tbr2, an IP-specific transcription factor, in laminar fate regulation using Tbr2 conditional mutant mice. Upon Tbr2 inactivation, fewer neurons were produced by immediate differentiation and laminar fates were shifted upward. Genesis of subventricular mitoses was, however, not reduced in the context of a Tbr2-null cortex. Instead, neuronal and laminar differentiation were disrupted and delayed. Our findings indicate that upper-layer genesis depends on IPs from many stages of corticogenesis and that Tbr2 regulates the tempo of laminar fate implementation for all cortical layers

    The Epigenetic Factor Landscape of Developing Neocortex Is Regulated by Transcription Factors Pax6→ Tbr2→ Tbr1

    Get PDF
    Epigenetic factors (EFs) regulate multiple aspects of cerebral cortex development, including proliferation, differentiation, laminar fate, and regional identity. The same neurodevelopmental processes are also regulated by transcription factors (TFs), notably the Pax6→ Tbr2→ Tbr1 cascade expressed sequentially in radial glial progenitors (RGPs), intermediate progenitors, and postmitotic projection neurons, respectively. Here, we studied the EF landscape and its regulation in embryonic mouse neocortex. Microarray and in situ hybridization assays revealed that many EF genes are expressed in specific cortical cell types, such as intermediate progenitors, or in rostrocaudal gradients. Furthermore, many EF genes are directly bound and transcriptionally regulated by Pax6, Tbr2, or Tbr1, as determined by chromatin immunoprecipitation-sequencing and gene expression analysis of TF mutant cortices. Our analysis demonstrated that Pax6, Tbr2, and Tbr1 form a direct feedforward genetic cascade, with direct feedback repression. Results also revealed that each TF regulates multiple EF genes that control DNA methylation, histone marks, chromatin remodeling, and non-coding RNA. For example, Tbr1 activates Rybp and Auts2 to promote the formation of non-canonical Polycomb repressive complex 1 (PRC1). Also, Pax6, Tbr2, and Tbr1 collectively drive massive changes in the subunit isoform composition of BAF chromatin remodeling complexes during differentiation: for example, a novel switch from Bcl7c (Baf40c) to Bcl7a (Baf40a), the latter directly activated by Tbr2. Of 11 subunits predominantly in neuronal BAF, 7 were transcriptionally activated by Pax6, Tbr2, or Tbr1. Using EFs, Pax6→ Tbr2→ Tbr1 effect persistent changes of gene expression in cell lineages, to propagate features such as regional and laminar identity from progenitors to neurons

    The protomap is propagated to cortical plate neurons through an Eomes-dependent intermediate map

    No full text
    The cortical area map is initially patterned by transcription factor (TF) gradients in the neocortical primordium, which define a “protomap” in the embryonic ventricular zone (VZ). However, mechanisms that propagate regional identity from VZ progenitors to cortical plate (CP) neurons are unknown. Here we show that the VZ, subventricular zone (SVZ), and CP contain distinct molecular maps of regional identity, reflecting different gene expression gradients in radial glia progenitors, intermediate progenitors, and projection neurons, respectively. The “intermediate map” in the SVZ is modulated by Eomes (also known as Tbr2), a T-box TF. Eomes inactivation caused rostrocaudal shifts in SVZ and CP gene expression, with loss of corticospinal axons and gain of corticotectal projections. These findings suggest that cortical areas and connections are shaped by sequential maps of regional identity, propagated by the Pax6 → Eomes → Tbr1 TF cascade. In humans, PAX6, EOMES, and TBR1 have been linked to intellectual disability and autism
    corecore