224 research outputs found

    Elevated CO<sub>2</sub> does not increase eucalypt forest productivity on a low-phosphorus soil

    Get PDF
    Rising atmospheric CO2 stimulates photosynthesis and productivity of forests, offsetting CO2 emissions. Elevated CO2 experiments in temperate planted forests yielded ~23% increases in productivity over the initial years. Whether similar CO2 stimulation occurs in mature evergreen broadleaved forests on low-phosphorus (P) soils is unknown, largely due to lack of experimental evidence. This knowledge gap creates major uncertainties in future climate projections as a large part of the tropics is P-limited. Here,we increased atmospheric CO2 concentration in a mature broadleaved evergreen eucalypt forest for three years, in the first large-scale experiment on a P-limited site. We show that tree growth and other aboveground productivity components did not significantly increase in response to elevated CO2 in three years, despite a sustained 19% increase in leaf photosynthesis. Moreover, tree growth in ambient CO2 was strongly P-limited and increased by ~35% with added phosphorus. The findings suggest that P availability may potentially constrain CO2-enhanced productivity in P-limited forests; hence, future atmospheric CO2 trajectories may be higher than predicted by some models. As a result, coupled climate-carbon models should incorporate both nitrogen and phosphorus limitations to vegetation productivity in estimating future carbon sinks

    Atrial fibrillation, anticoagulation management and risk of stroke in the Cardiomyopathy/Myocarditis registry of the EURObservational Research Programme of the European Society of Cardiology

    Get PDF
    Aims: Cardiomyopathies are a heterogeneous group of disorders that increase the risk for atrial fibrillation (AF). The aim of the study is to assess the prevalence of AF, anticoagulation management, and risk of stroke/transient ischaemic attack (TIA) in patients with cardiomyopathy. / Methods and results: Three thousand two hundred eight consecutive adult patients with cardiomyopathy (34.9% female; median age: 55.0 years) were prospectively enrolled as part of the EURObservational Research Programme Cardiomyopathy/Myocarditis Registry. At baseline, 903 (28.2%) patients had AF (29.4% dilated, 27.5% hypertrophic, 51.5% restrictive, and 14.7% arrhythmogenic right ventricular cardiomyopathy, P < 0.001). AF was associated with more advanced New York Heart Association class (P < 0.001), increased prevalence of cardiovascular risk factors and co‐morbidities, and a history of stroke/TIA (P < 0.001). Oral anticoagulation was administered in 71.7% of patients with AF (vitamin K antagonist: 51.6%; direct oral anticoagulant: 20.1%). At 1 year follow‐up, the incidence of cardiovascular endpoints was as follows: stroke/TIA 1.85% (AF vs. non‐AF: 3.17% vs. 1.19%, P < 0.001), death from any cause 3.43% (AF vs. non‐AF: 5.39% vs. 2.50%, P < 0.001), and death from heart failure 1.67% (AF vs. non‐AF: 2.44% vs. 1.31%, P = 0.033). The independent predictors for stroke/TIA were as follows: AF [odds ratio (OR) 2.812, P = 0.005], history of stroke (OR 7.311, P = 0.010), and anaemia (OR 3.119, P = 0.006). / Conclusions: The study reveals a high prevalence and diverse distribution of AF in patients with cardiomyopathies, inadequate anticoagulation regimen, and high risk of stroke/TIA in this population

    Novel approaches for immune reconstitution and adaptive immune modeling with human pluripotent stem cells

    Get PDF
    Pluripotent stem cells have the capacity to generate all cell lineages, and substantial progress has been made in realizing this potential. One fascinating but as yet unrealized possibility is the differentiation of pluripotent stem cells into thymic epithelial cells. The thymus is a primary lymphoid organ essential for naïve T-cell generation. T cells play an important role in adaptive immunity, and their loss or dysfunction underlies in a wide range of autoimmune and infectious diseases. T cells are generated and selected through interaction with thymic epithelial cells, the functionally essential element of thymus. The ability to generate functional thymic epithelial cells from pluripotent stem cells would have applications in modeling human immune responses in mice, in tissue transplantation, and in modulating autoimmune and infectious disease

    Sports, morality and body. The voices of sportswomen under Franco's dictatorship

    Get PDF
    The aim of this research is to study sportswomen's perceptions and experiences of women's sport in Francoist Spain (1939-1975). The main objective is to analyse the social, moral and aesthetic elements that are present in the experience of these athletes. This study was carried out with an intentional sample of 24 women from Andalusia, Aragon, Asturias, Basque Country, Catalonia and Valencia. They were interviewed by a network of researchers from six universities. Outstanding results show the existence of social limitations to start sports practice (particularly in the post-war period); the importance of sport as a character-building aspect; sport's remarkable influence on their body self-concept; and the incidence on sports of the mainstream moral discourse, which created a female model that even affected sports clothing. The main conclusion is that sportswomen in that period were pioneers and had to fight against most of society in order to develop their facet as athletes, as they would not follow the established model

    Clinical Phenotypes and Prognosis of Dilated Cardiomyopathy Caused by Truncating Variants in the TTN Gene

    Get PDF
    BACKGROUND: Truncating variants in the TTN gene (TTNtv) are the commonest cause of heritable dilated cardiomyopathy. This study aimed to study the phenotypes and outcomes of TTNtv carriers. METHODS: Five hundred thirty-seven individuals (61% men; 317 probands) with TTNtv were recruited in 14 centers (372 [69%] with baseline left ventricular systolic dysfunction [LVSD]). Baseline and longitudinal clinical data were obtained. The primary end point was a composite of malignant ventricular arrhythmia and end-stage heart failure. The secondary end point was left ventricular reverse remodeling (left ventricular ejection fraction increase by ≥10% or normalization to ≥50%). RESULTS: Median follow-up was 49 (18-105) months. Men developed LVSD more frequently and earlier than women (45±14 versus 49±16 years, respectively; P=0.04). By final evaluation, 31%, 45%, and 56% had atrial fibrillation, frequent ventricular ectopy, and nonsustained ventricular tachycardia, respectively. Seventy-six (14.2%) individuals reached the primary end point (52 [68%] end-stage heart failure events, 24 [32%] malignant ventricular arrhythmia events). Malignant ventricular arrhythmia end points most commonly occurred in patients with severe LVSD. Male sex (hazard ratio, 1.89 [95% CI, 1.04-3.44]; P=0.04) and left ventricular ejection fraction (per 10% decrement from left ventricular ejection fraction, 50%; hazard ratio, 1.63 [95% CI, 1.30-2.04]; P<0.001) were independent predictors of the primary end point. Two hundred seven of 300 (69%) patients with LVSD had evidence of left ventricular reverse remodeling. In a subgroup of 29 of 74 (39%) patients with initial left ventricular reverse remodeling, there was a subsequent left ventricular ejection fraction decrement. TTNtv location was not associated with statistically significant differences in baseline clinical characteristics, left ventricular reverse remodeling, or outcomes on multivariable analysis (P=0.07). CONCLUSIONS: TTNtv is characterized by frequent arrhythmia, but malignant ventricular arrhythmias are most commonly associated with severe LVSD. Male sex and LVSD are independent predictors of outcomes. Mutation location does not impact clinical phenotype or outcomes

    Differential Expression of PGC-1α and Metabolic Sensors Suggest Age-Dependent Induction of Mitochondrial Biogenesis in Friedreich Ataxia Fibroblasts

    Get PDF
    11 pages, 6 figures. PMID:21687738[PubMed] PMCID: PMC3110204BACKGROUND: Friedreich's ataxia (FRDA) is a mitochondrial rare disease, which molecular origin is associated with defect in the expression of frataxin. The pathological consequences are degeneration of nervous system structures and cardiomyopathy with necrosis and fibrosis, among others. PRINCIPAL FINDINGS: Using FRDA fibroblasts we have characterized the oxidative stress status and mitochondrial biogenesis. We observed deficiency of MnSOD, increased ROS levels and low levels of ATP. Expression of PGC-1α and mtTFA was increased and the active form of the upstream signals p38 MAPK and AMPK in fibroblasts from two patients. Interestingly, the expression of energetic factors correlated with the natural history of disease of the patients, the age when skin biopsy was performed and the size of the GAA expanded alleles. Furthermore, idebenone inhibit mitochondriogenic responses in FRDA cells. CONCLUSIONS: The induction of mitochondrial biogenesis in FRDA may be a consequence of the mitochondrial impairment associated with disease evolution. The increase of ROS and the involvement of the oxidative phosphorylation may be an early event in the cell pathophysiology of frataxin deficiency, whereas increase of mitochondriogenic response might be a later phenomenon associated to the individual age and natural history of the disease, being more evident as the patient age increases and disease evolves. This is a possible explanation of heart disease in FRDA.This work was supported by grants SAF2008-01338, SAF2006-01047 and SAF2009-07063 from the Ministerio de Ciencia e Innovación and financial support from the CIBERER (Biomedical Network Research Center for Rare Diseases). A.G. thanks the Conselleria de Educación of the Generalitat Valenciana for the financial support by grants GVPRE/2008/154. A.B.-A. is the recipient of a JAE-CSIC predoctoral fellowship. The CIBERER is an initiative of the Instituto de Salud Carlos III and INGENIO 2010.Peer reviewe

    Optimal stomatal behaviour around the world

    Full text link
    © 2015 Macmillan Publishers Limited. All rights reserved. Stomatal conductance (g s) is a key land-surface attribute as it links transpiration, the dominant component of global land evapotranspiration, and photosynthesis, the driving force of the global carbon cycle. Despite the pivotal role of g s in predictions of global water and carbon cycle changes, a global-scale database and an associated globally applicable model of g s that allow predictions of stomatal behaviour are lacking. Here, we present a database of globally distributed g s obtained in the field for a wide range of plant functional types (PFTs) and biomes. We find that stomatal behaviour differs among PFTs according to their marginal carbon cost of water use, as predicted by the theory underpinning the optimal stomatal model and the leaf and wood economics spectrum. We also demonstrate a global relationship with climate. These findings provide a robust theoretical framework for understanding and predicting the behaviour of g s across biomes and across PFTs that can be applied to regional, continental and global-scale modelling of ecosystem productivity, energy balance and ecohydrological processes in a future changing climate

    Optimal stomatal behaviour around the world

    Get PDF
    This is the author accepted manuscript. The final version is available from Springer Nature via the DOI in this recordStomatal conductance (g s) is a key land-surface attribute as it links transpiration, the dominant component of global land evapotranspiration, and photosynthesis, the driving force of the global carbon cycle. Despite the pivotal role of g s in predictions of global water and carbon cycle changes, a global-scale database and an associated globally applicable model of g s that allow predictions of stomatal behaviour are lacking. Here, we present a database of globally distributed g s obtained in the field for a wide range of plant functional types (PFTs) and biomes. We find that stomatal behaviour differs among PFTs according to their marginal carbon cost of water use, as predicted by the theory underpinning the optimal stomatal model and the leaf and wood economics spectrum. We also demonstrate a global relationship with climate. These findings provide a robust theoretical framework for understanding and predicting the behaviour of g s across biomes and across PFTs that can be applied to regional, continental and global-scale modelling of ecosystem productivity, energy balance and ecohydrological processes in a future changing climate.This research was supported by the Australian Research Council (ARC MIA Discovery Project 1433500-2012-14). A.R. was financially supported in part by The Next-Generation Ecosystem Experiments (NGEE-Arctic) project, which is supported by the Office of Biological and Environmental Research in the Department of Energy, Office of Science, and through the United States Department of Energy contract No. DE-AC02-98CH10886 to Brookhaven National Laboratory. M.O.d.B. acknowledges that the Brassica data were obtained within a research project financed by the Belgian Science Policy (OFFQ, contract number SD/AF/02) and coordinated by K. Vandermeiren at the Open-Top Chamber research facilities of CODA-CERVA (Tervuren, Belgium)
    corecore