26 research outputs found

    The use of straw mulch as a strategy to prevent extreme soil erosion rates in citrus orchard. A Rainfall simulation approach

    Get PDF
    Not only the Sahel (Haregeweyn et al., 2013), the deforested land (Borelli et al., 2013) the chinese Plateau are affected by intense soil erosion rates (Zhao et al., 2013). Soil erosion affect agriculture land (Cerdà et al., 2009), and citrus orchards are being seeing as one of the crops with the highest erosion rates due to the managements that avoid the catch crops, weeds or litter. Example of the research carried out on citrus orchards is found in the Mediterranean (Cerdà and Jurgensen, 2008; 2009; Cerdà et al., 2009a; 2009b; Cerdà et al., 2011; 2012) and in China (Wu et al., 1997; Xu et al., 2010; Wang et al., 2011; Wu et al., 2011; Liu et al., 2011; Lü et al., 2011; Xu et al., 2012), and they confirm the non sustainable soil losses measured. The land management in citrus plantations results in soil degradation too (Lu et al., 1997; Lü et al., 2012; Xu et al., 2012). The use of cover crops to reduce the soil losses (Lavigne et al., 2012; Le Bellec et al., 2012) and the use of residues such as dried citrus peel has been found successful. There is a need to find new plants or residues to protect the soils on citrus orchards. Agriculture produces a high amount of residues. The pruning can contribute with a valuable source of nutrients and a good soil protection. The leaves of the trees, and some parts of the plants, once harvest can contribute to reduce the soil losses. Due to the mechanization of the agriculture, and the reduction of the draft animals (mainly horses, mules, donkeys and oxen) the straw is being a residue instead of a resource. The Valencia region is the largest producer of citrus in Europe, and the largest exporter in the world. This citrus production region is located in the eastern cost of Spain where we can find the rice production area of the l’Albufera Lagoon paddy fields, the third largest production region in Spain. This means, a rice production region surrounded by the huge citrus production region. There, the rice straw is not used in the paddy fields after harvesting and the straw is being as a residue that damages the air quality when burnt, the water quality due to the decomposition and the methane production, and is not accepted in the field by the farmers. This is a new problem as few years ago the rice straw was use for animal feeding. Many attempts were developed in the last decade to remove and use the straw to avoid fires and water pollution (Iranzo et al., 2004; Silvestre et al., 2013). Our goal is to test if a residue such as the rice straw can be transformed as a resource: soil erosion control. Straw has been seen as a very efficient to reduce the water losses in agriculture land (García Moreno et al., 2013), the soil losses in fire affected land (Robichaud et al., 2013a; 2013b; Fernandez and Vega, 2014), and soil properties (García Orenes et al., 2009; 2010; Jordán et al., 2010; García Orenes 2012). Rainfall simulations under 55 mm h-1 rainfall intensity during one hour on 0,25 m2 plots were carried out on plots paired plots: bare and covered with straw. The plots covered with straw had different straw mulch cover: from 10 to 100 % cover and from 0,005 g m2 to 300 g m2. The results show a positive effect of the straw cover that show an exponential relation between the straw cover and weight with the sediment yield. Acknowledgements The research projects GL2008-02879/BTE, LEDDRA 243857 and RECARE supported this research

    An economic, perception and biophysical approach to the use of oat straw as mulch in Mediterranean rainfed agriculture land

    Get PDF
    Soil erosion is a key cause of land degradation in agriculture lands; and it is a worldwide threat that must be solved by means of nature-based strategies to be able to achieve sustainability. The use of mulches can be a solution, but there is a lack of information on long-term effects of the use of straw. Furthermore, little is known about the perception of farmers and the economic cost on the implantation of straw as a conservation measure. Eight paired plots were selected in Sierra de Enguera on an agriculture field to determine the effect of straw cover on soil erosion. Four plots were tilled three times per year (Control) and four plots were not ploughed and 0.125 kg m−2 y−1 of oat straw cover was applied yearly (Straw). The plots were established in 2002, and runoff and sediment was continuously collected after each rainfall event from 2004 till 2014 when the two managements were applied. The results show an immediate effect of the straw mulches as in these plots the runoff (from 7.7 till 5.9%) and soil erosion (from 47 till 26 Mg ha−1 y−1) was reduced already in the first year. The combined effect of the use of straw yearly and the no-tillage strategy resulted in a reduction of the sediment yield, and 11 years later soil erosion rates were two orders of magnitude lower than in the control plot. However, the perception of the farmers on the use of straw is very negative and they claim that subsidies need to be implemented, as the cost of straw mulch is 1.9 times more expensive than traditional tillage

    Straw mulch as a sustainable solution to decrease runoff and erosion in glyphosate-treated clementine plantations in Eastern Spain. An assessment using rainfall simulation experiments

    Full text link
    [EN] In many Mediterranean areas, citrus orchards exhibit high soil loss rates because of the expansion of drip irrigation that allows cultivation on sloping terrain and the widespread use of glyphosate. To mitigate these non-sustainable soil losses, straw mulch could be applied as an efficient solution but this has been poorly studied. Therefore, the main goal of this paper was to assess the use of straw mulch as a tool to reduce soil losses in clementine plantations, which can be considered representative of a typical Mediterranean citrus orchard. A total of 40 rainfall simulation experiments were carried out on 20 pairs of neighbouring bare and mulched plots. Each experiment involved applying 38.8 mm of rain at a constant rate over 1 h to a circular plot of 0.28 m(2) circular plots. The results showed that a cover of 50% of straw (60 g m(-2)) was able to delay the time to ponding from 32 to 52 s and the time to runoff initiation from 57 to 129 s. Also, the mulching reduced the runoff coefficient from 65.6 to 50.5%. The effect on sediment transport was even more pronounced, as the straw mulch reduced the sediment concentration from 16.7 g l(-1) to 3.6 g l(-1) and the soil erosion rates from 439 g to 73 g. Our results indicated that mulching can be used as a useful management practice to control soil erosion rates due to the immediate effect on high soil detachment rate and runoff initiation reduction in conventional clementine orchards on sloping land, by slowing down runoff initiation and by reducing runoff generation and, especially, sediment losses. We indirectly concluded that straw mulch is also a sustainable solution in glyphosate-treated citrus plantations.This paper is part of the results of research projects GL2008-02879/BTE, LEDDRA 243857 and RECARE-FP7 (ENV.2013.6.2-4).Keesstra, S.; Rodrigo-Comino, J.; Novara, A.; Giménez Morera, A.; Pulido, M.; Di Prima, S.; Cerda, A. (2019). Straw mulch as a sustainable solution to decrease runoff and erosion in glyphosate-treated clementine plantations in Eastern Spain. An assessment using rainfall simulation experiments. CATENA. 174:95-103. https://doi.org/10.1016/j.catena.2018.11.007S9510317

    Policies can help to apply successful strategies to control soil and water losses. The case of chipped pruned branches (CPB) in Mediterranean citrus plantations

    Get PDF
    There is a need to devise management strategies that control soil and water losses in agriculture land to allow the design of proper policies to achieve sustainability. It is the responsibility of scientists to work with other actors to co-construct strategies that will lead to sustainable land-use policies. Using chipped pruned branches (CPB) as mulch can be a viable option because they represent local (in situ) organic material that can restore soil nutrients and organic matter. This research assesses: i) the perception of farmers towards different types of management strategies and CPB's costs; ii) the biomass yield of citrus branches and the impact of CPB on soil properties; iii) how CPB affects soil erosion and runoff generation in citrus plantations; and, iv) a discussion about how to favour the use of CPB thought successful policies. To achieve those goals we carried out: i) one-hundred interviews to assess the perception of farmers and twelve interviews to assess the economic balance of twelve land owners; ii) soil was sampled at 0-2 and 4-6 cm depths; iii) pruned material was surveyed for 40 trees; and iv) forty rainfall simulation experiments (55mmh−1) were carried out in two citrus plantations at paired sites (Control versus CPB), in La Costera District in Eastern Spain. Forty circular (0.25m2) plots were installed in four rows (4×5=20 plots) in control (CON) and CPB plots (20+20=40 plots) to perform the rainfall simulations over one hour. The cost of chipping ranged from 102 to 253 ha−1, and was related to the size of the farm. The soil quality, runoff and erosion assessment showed that CPB is a suitable strategy. CPB increased organic matter from 1.3% to 2.9% after 10 years in the 0-2 cm depth layer, while the 4-6 cm layer was largely not affected (OM moved from 1.1 to 1.3% after 10 years), and soil bulk density showed a similar trend: a decrease from 1.36 to 1.16 g cm−3 in the surface layer with no change in the subsurface layer. The hydrological and erosional responses were different between CON and CPB. The CON plots initiated ponding (40 s) and runoff (107 s) earlier than the CPB plots (169 and 254 s, respectively); and runoff discharge was 60% in CON vs 43% in CPB plots. Sediment concentration was four times larger in the CON plots than in the CPB (11.3 g l−1 vs 3 g l−1), and soil erosion was 3.8 Mg ha−1 h-1 vs 0.7 Mg ha−1 h−1. CPB mulches were effective at controlling soil and water losses in Mediterranean citrus plantations as they showed the relationship between vegetation/litter cover and soil erosion rates. However, the farmer's perception survey showed that the use of CPB was not welcomed nor accepted by the farmers. Policies that aim to promote CPB as soil conservation mulch need to be promoted by subsidies as the farmers requested, and by education to demonstrate the positive effects of CPB to of the farming community

    La agricultura ecológica a largo plazo en plantaciones de cítricos permite la recuperación del carbono orgánico del suelo

    Get PDF
    [ES] Se ha demostrado que el manejo del suelo bajo agricultura ecológica puede aumentar el contenido de carbono orgánico en el suelo moderando el incremento de los gases de efecto invernadero, pero hasta la fecha las evaluaciones cuantitativas basadas en mediciones a largo plazo han sido escasas, especialmente bajo condiciones mediterráneas. En esta investigación se examinaron los cambios en el contenido de carbono orgánico como respuesta a la agricultura ecológica con cobertura vegetal en una plantación de cítricos en el área mediterránea, utilizando una base de datos de 21 años. El incremento de contenido de carbono orgánico en el suelo fue más evidente tras cinco años desde el cambio del manejo del suelo, sugiriendo que, para plantaciones de cítricos en ambientes mediterráneos, los estudios deberían tener una duración superior a cinco años. La sata de secuestro de carbono orgánico no cambió significativamente durante los 21 años de observaciones, con valores que oscilaron entre -1.10 Mg C ha-1 a-1 y 1.89 Mg C ha-1 a-1. Tras 21 años, un total de 61 t CO2 ha-1 fueron secuestradas en las áreas de acumulación de carbono en el suelo. Estos resultados demuestran que la agricultura ecológica es una estrategia efectiva para restaurar o incrementar los niveles de carbono orgánico en el suelo en los sistemas de cítricos mediterráneos.[EN] It has been shown that soil management under organic farming can enhance soil organic carbon, thereby mitigating atmospheric greenhouse gas increases, but until now quantitative evaluations based on long term experiments are scarce, especially under Mediterranean conditions. Changes in soil organic carbon (SOC) content were examined in response to organic management with cover crops in a Mediterranean citrus plantation using 21 years of survey data. Soil organic carbon increase was more apparent 5 years after a land management change suggesting that, for citrus plantations on Mediterranean conditions, studies should be longer than five years in duration. Soil organic carbon sequestration rate did not significantly change during the 21 years of observation, with values ranging from -1.10 Mg C ha(-1) y(-1) to 1.89 Mg C ha(-1) y(-1). After 21 years, 61 Mg CO2 ha(-1) were sequestered in long-lived soil C pools. These findings demonstrate that organic management is an effective strategy to restore or increase SOC content in Mediterranean citrus systems.This research was funded by the European Union Seventh Framework Program (FP7/2007-2013) under grant no. 603498 (RECARE Project) and the research projects GL2008-02879/BTE and LEDDRA 243857.Novara, A.; Pulido, M.; Rodrigo-Comino, J.; Di Prima, S.; Smith, P.; Gristina, L.; Giménez Morera, A.... (2019). Long-term organic farming on a citrus plantation results in soil organic carbon recovery. Cuadernos de Investigación Geográfica. 45(1):271-286. https://doi.org/10.18172/cig.3794S27128645

    New insights into the neolithisation process in southwest Europe according to spatial density analysis from calibrated radiocarbon dates

    Get PDF
    The agricultural way of life spreads throughout Europe via two main routes: the Danube corridor and the Mediterranean basin. Current archaeological literature describes the arrival to the Western Mediterranean as a rapid process which involves both demic and cultural models, and in this regard, the dispersal movement has been investigated using mathematical models, where the key factors are time and space. In this work, we have created a compilation of all available radiocarbon dates for the whole of Iberia, in order to draw a chronological series of maps to illustrate temporal and spatial patterns in the neolithisation process. The maps were prepared by calculating the calibrated 14C date probability density curves, as a proxy to show the spatial dynamics of the last hunter-gatherers and first farmers. Several scholars have pointed out problems linked with the variability of samples, such as the overrepresentation of some sites, the degree of regional research, the nature of the dated samples and above all the archaeological context, but we are confident that the selected dates, after applying some filters and statistical protocols, constitute a good way to approach settlement spatial patterns in Iberia at the time of the neolithisation process

    DESERTIFICATION AND DEGRADATION RISKS VS POVERTY: A KEY TOPIC IN MEDITERRANEAN EUROPE

    Get PDF
    Land degradation and, subsequently, desertification processes are conditioned by biophysical factors and human impacts. Nowadays, there is an increasing interest by social scientists to assess its implications. Especially, it is relevant to the potential changes and landscape deterioration on population, economic systems and feedbacks of local societies to such adjustments. Assessing social facets should also be related to desertification risks, integrated socio-economic inputs and environmentally sustainable development perspectives. However, investigations about the effects of land degradation conditioned by global socioeconomic-factors from a holistic point of view are scarce. In this review, we pretend to discuss past and recent findings on land degradation risks related to poverty, especially based on Mediterranean Europe. To achieve this goal, we focused on key socioeconomic forces such as developmental policy, production and market structure, social change and population mobility. Our review showed that regional disparities based on complex dynamics of demographic forces (e.g. migration, fertility and ageing) and economic drivers of change (e.g. industrial concentration, urbanization, crop intensification, tourism pressure, coastalization) are keys to understand Mediterranean regions such as Southern Italy, a region exposed to high desertification risk in Europe. We concluded that the overexploitation of territories, soil and water degradation urban expansion, tourism and unplanned industrialization are some sectors and activities which can be highly affected by political and socioeconomic forces leading to unsustainable forms of land management and types of development. Special attention should be paid to social policies, education and training schemes to reduce rural migration and potentiate territorial knowledge to avoid land degradation, considering other social issues such as poverty or centralization. The potential role of win-win policies abating poverty and reducing desertification risk is evident in Mediterranean Europe and achieving land degradation neutrality necessary
    corecore