382 research outputs found

    Research study of some RAM antennas Final report, 18 Nov. 1964 - 18 Jun. 1965

    Get PDF
    Input impedance and radiation pattern determinations for cylindrical gap, waveguide excited and circular waveguide slot antenna array

    Volatile‐mediated interactions with surface‐associated microbes: A parallelism between phyllosphere of plants and eco‐chemosphere of seaweeds

    Get PDF
    1. Both in terrestrial and aquatic realms, organisms communicate and interact with each other via volatile and non-volatile infochemicals. Terrestrial plants and seaweeds, known as prolific producers of volatiles, harbour a plethora of microbes on their surfaces like phyllosphere of plant leaves and eco-chemosphere of seaweeds, respectively, where complex ecological interactions are regulated through infochemicals. 2. Although plant leaf volatiles have been well-studied for their ecological functions in mediating microbial interactions, seaweed volatiles have been mostly investigated for their roles in climate regulation and with regard to climate change research. However, seaweed volatiles appear to be related to terrestrial plant volatiles both in terms of chemistry and ecology. 3. Synthesis. Evidence supports that seaweed volatiles can have important ecological functions in mediating interactions with microbes on their surface, just like plant leaf volatiles. Based on the existing vast literature on ecological interactions mediated by plant volatiles at phyllosphere and on the very few works on ecological roles of seaweed volatiles at eco-chemosphere, we advocate for the detailed investigation of volatile-mediated interactions regulating microbial colonisation processes on seaweed surfaces. Although of great ecological importance, this new field of research has remained largely unexplored. Thus, we also set directions for future research programs investigating the roles of seaweed volatiles at seaweed–microbe interface

    Glucose metabolism and oscillatory behavior of pancreatic islets

    Full text link
    A variety of oscillations are observed in pancreatic islets.We establish a model, incorporating two oscillatory systems of different time scales: One is the well-known bursting model in pancreatic beta-cells and the other is the glucose-insulin feedback model which considers direct and indirect feedback of secreted insulin. These two are coupled to interact with each other in the combined model, and two basic assumptions are made on the basis of biological observations: The conductance g_{K(ATP)} for the ATP-dependent potassium current is a decreasing function of the glucose concentration whereas the insulin secretion rate is given by a function of the intracellular calcium concentration. Obtained via extensive numerical simulations are complex oscillations including clusters of bursts, slow and fast calcium oscillations, and so on. We also consider how the intracellular glucose concentration depends upon the extracellular glucose concentration, and examine the inhibitory effects of insulin.Comment: 11 pages, 16 figure

    Insights into GABA receptor signalling in TM3 Leydig cells

    Get PDF
    gamma-Aminobutyric acid (GABA) is an emerging signalling molecule in endocrine organs, since it is produced by endocrine cells and acts via GABA(A) receptors in a paracrine/autocrine fashion. Testicular Leydig cells are producers and targets for GABA. These cells express GABA(A) receptor subunits and in the murine Leydig cell line TM3 pharmacological activation leads to increased proliferation. The signalling pathway of GABA in these cells is not known in this study. We therefore attempted to elucidate details of GABA(A) signalling in TM3 and adult mouse Leydig cells using several experimental approaches. TM3 cells not only express GABA(A) receptor subunits, but also bind the GABA agonist {[}H-3] muscimol with a binding affinity in the range reported for other endocrine cells (K-d = 2.740 +/- 0.721 nM). However, they exhibit a low B-max value of 28.08 fmol/mg protein. Typical GABA(A) receptor-associated events, including Cl- currents, changes in resting membrane potential, intracellular Ca2+ or cAMP, were not measurable with the methods employed in TM3 cells, or, as studied in part, in primary mouse Leydig cells. GABA or GABA(A) agonist isoguvacine treatment resulted in increased or decreased levels of several mRNAs, including transcription factors (c-fos, hsf-1, egr-1) and cell cycle-associated genes (Cdk2, cyclin D1). In an attempt to verify the cDNA array results and because egr-1 was recently implied in Leydig cell development, we further studied this factor. RT-PCR and Western blotting confirmed a time-dependent regulation of egr-1 in TM3. In the postnatal testis egr-1 was seen in cytoplasmic and nuclear locations of developing Leydig cells, which bear GABA(A) receptors and correspond well to TM3 cells. Thus, GABA acts via an untypical novel signalling pathway in TM3 cells. Further details of this pathway remain to be elucidated. Copyright (c) 2005 S. Karger AG, Base

    Accurate Characterization of Silicon-On-Insulator MOSFETs for the Design of Low-Voltage, Low-Power RF Integrated Circuits

    Full text link
    The maturation of low cost Silicon-on-Insulator (SOI) MOSFET technology in the microwave domain has brought about a need to develop specific characterization techniques. An original scheme is presented, which, by combining careful design of probing and calibration structures, rigorous in-situ calibration, and a new powerful direct extraction method, allows reliable identification of the parameters of the non-quasi-static small-signal model and the high-frequency noise parameters for MOSFETs. The extracted model is shown to be valid up to 40 GHz.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44055/1/10470_2004_Article_271487.pd

    Microbial engineering for production of N-functionalized amino acids and amines

    Get PDF
    Mindt M, Walter T, Kugler P, Wendisch VF. Microbial engineering for production of N-functionalized amino acids and amines. Biotechnology Journal . 2020;15(7): 1900451.N‐ functionalized amines play important roles in nature and occur, for example, in the antibiotic vancomycin, the immunosuppressant cyclosporine, the cytostatic actinomycin, the siderophore aerobactin, the cyanogenic glucoside linamarin, and the polyamine spermidine. In the pharmaceutical and fine‐chemical industries N‐ functionalized amines are used as building blocks for the preparation of bioactive molecules. Processes based on fermentation and on enzyme catalysis have been developed to provide sustainable manufacturing routes to N‐ alkylated, N‐ hydroxylated, N‐ acylated, or other N‐ functionalized amines including polyamines. Metabolic engineering for provision of precursor metabolites is combined with heterologous N‐ functionalizing enzymes such as imine or ketimine reductases, opine or amino acid dehydrogenases, N‐ hydroxylases, N‐ acyltransferase, or polyamine synthetases. Recent progress and applications of fermentative processes using metabolically engineered bacteria and yeasts along with the employed enzymes are reviewed and the perspectives on developing new fermentative processes based on insight from enzyme catalysis are discussed

    Rapid Insulinotropic Action of Low Doses of Bisphenol-A on Mouse and Human Islets of Langerhans: Role of Estrogen Receptor β

    Get PDF
    Bisphenol-A (BPA) is a widespread endocrine-disrupting chemical (EDC) used as the base compound in the manufacture of polycarbonate plastics. It alters pancreatic β-cell function and can be considered a risk factor for type 2 diabetes in rodents. Here we used ERβ−/− mice to study whether ERβ is involved in the rapid regulation of KATP channel activity, calcium signals and insulin release elicited by environmentally relevant doses of BPA (1 nM). We also investigated these effects of BPA in β-cells and whole islets of Langerhans from humans. 1 nM BPA rapidly decreased KATP channel activity, increased glucose-induced [Ca2+]i signals and insulin release in β-cells from WT mice but not in cells from ERβ−/− mice. The rapid reduction in the KATP channel activity and the insulinotropic effect was seen in human cells and islets. BPA actions were stronger in human islets compared to mouse islets when the same BPA concentration was used. Our findings suggest that BPA behaves as a strong estrogen via nuclear ERβ and indicate that results obtained with BPA in mouse β-cells may be extrapolated to humans. This supports that BPA should be considered as a risk factor for metabolic disorders in humans

    Per-arnt-sim (PAS) domain-containing protein kinase is downregulated in human islets in type 2 diabetes and regulates glucagon secretion.

    Get PDF
    AIMS/HYPOTHESIS: We assessed whether per-arnt-sim (PAS) domain-containing protein kinase (PASK) is involved in the regulation of glucagon secretion. METHODS: mRNA levels were measured in islets by quantitative PCR and in pancreatic beta cells obtained by laser capture microdissection. Glucose tolerance, plasma hormone levels and islet hormone secretion were analysed in C57BL/6 Pask homozygote knockout mice (Pask-/-) and control littermates. Alpha-TC1-9 cells, human islets or cultured E13.5 rat pancreatic epithelia were transduced with anti-Pask or control small interfering RNAs, or with adenoviruses encoding enhanced green fluorescent protein or PASK. RESULTS: PASK expression was significantly lower in islets from human type 2 diabetic than control participants. PASK mRNA was present in alpha and beta cells from mouse islets. In Pask-/- mice, fasted blood glucose and plasma glucagon levels were 25 ± 5% and 50 ± 8% (mean ± SE) higher, respectively, than in control mice. At inhibitory glucose concentrations (10 mmol/l), islets from Pask-/- mice secreted 2.04 ± 0.2-fold (p < 0.01) more glucagon and 2.63 ± 0.3-fold (p < 0.01) less insulin than wild-type islets. Glucose failed to inhibit glucagon secretion from PASK-depleted alpha-TC1-9 cells, whereas PASK overexpression inhibited glucagon secretion from these cells and human islets. Extracellular insulin (20 nmol/l) inhibited glucagon secretion from control and PASK-deficient alpha-TC1-9 cells. PASK-depleted alpha-TC1-9 cells and pancreatic embryonic explants displayed increased expression of the preproglucagon (Gcg) and AMP-activated protein kinase (AMPK)-alpha2 (Prkaa2) genes, implying a possible role for AMPK-alpha2 downstream of PASK in the control of glucagon gene expression and release. CONCLUSIONS/INTERPRETATION: PASK is involved in the regulation of glucagon secretion by glucose and may be a useful target for the treatment of type 2 diabetes
    corecore