161 research outputs found

    The Cost of Sex: Quantifying Energetic Investment in Gamete Production by Males and Females

    Get PDF
    The relative energetic investment in reproduction between the sexes forms the basis of sexual selection and life history theories in evolutionary biology. It is often assumed that males invest considerably less in gametes than females, but quantifying the energetic cost of gamete production in both sexes has remained a difficult challenge. For a broad diversity of species (invertebrates, reptiles, amphibians, fishes, birds, and mammals), we compared the cost of gamete production between the sexes in terms of the investment in gonad tissue and the rate of gamete biomass production. Investment in gonad biomass was nearly proportional to body mass in both sexes, but gamete biomass production rate was approximately two to four orders of magnitude higher in females. In both males and females, gamete biomass production rate increased with organism mass as a power law, much like individual metabolic rate. This suggests that whole-organism energetics may act as a primary constraint on gamete production among species. Residual variation in sperm production rate was positively correlated with relative testes size. Together, these results suggest that understanding the heterogeneity in rates of gamete production among species requires joint consideration of the effects of gonad mass and metabolism

    The Distribution of Phosphatidylinositol 4,5-Bisphosphate in Acinar Cells of Rat Pancreas Revealed with the Freeze-Fracture Replica Labeling Method

    Get PDF
    Phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] is a phospholipid that has been implicated in multiple cellular activities. The distribution of PI(4,5)P2 has been analyzed extensively using live imaging of the GFP-coupled phospholipase C-δ1 pleckstrin homology domain in cultured cell lines. However, technical difficulties have prevented the study of PI(4,5)P2 in cells of in vivo tissues. We recently developed a method to analyze the nanoscale distribution of PI(4,5)P2 in cultured cells by using the quick-freezing and freeze-fracture replica labeling method. In principle, this method can be applied to any cell because it does not require the expression of artificial probes. In the present study, we modified the method to study cells of in vivo tissues and applied it to pancreatic exocrine acinar cells of the rat. We found that PI(4,5)P2 in the plasma membrane is distributed in an equivalent density in the apical and basolateral domains, but exists in a significantly higher concentration in the gap junction. The intracellular organelles did not show labeling for PI(4,5)P2. The results are novel or different from the reported distribution patterns in cell lines and highlight the importance of studying cells differentiated in vivo

    Gene Expression Modifications by Temperature-Toxicants Interactions in Caenorhabditis elegans

    Get PDF
    Although organophosphorus pesticides (OP) share a common mode of action, there is increased awareness that they elicit a diverse range of gene expression responses. As yet however, there is no clear understanding of these responses and how they interact with ambient environmental conditions. In the present study, we investigated genome-wide gene expression profiles in the nematode Caenorhabditis elegans exposed to two OP, chlorpyrifos and diazinon, in single and combined treatments at different temperatures. Our results show that chlorpyrifos and diazinon induced expression of different genes and that temperature affected the response of detoxification genes to the pesticides. The analysis of transcriptional responses to a combination of chlorpyrifos and diazinon shows interactions between toxicants that affect gene expression. Furthermore, our combined analysis of the transcriptional responses to OP at different temperatures suggests that the combination of OP and high temperatures affect detoxification genes and modified the toxic levels of the pesticides

    Membrane Protein Location-Dependent Regulation by PI3K (III) and Rabenosyn-5 in Drosophila Wing Cells

    Get PDF
    The class III phosphatidylinositol-3 kinase (PI3K (III)) regulates intracellular vesicular transport at multiple steps through the production of phosphatidylinositol-3-phosphate (PI(3)P). While the localization of proteins at distinct membrane domains are likely regulated in different ways, the roles of PI3K (III) and its effectors have not been extensively investigated in a polarized cell during tissue development. In this study, we examined in vivo functions of PI3K (III) and its effector candidate Rabenosyn-5 (Rbsn-5) in Drosophila wing primordial cells, which are polarized along the apical-basal axis. Knockdown of the PI3K (III) subunit Vps15 resulted in an accumulation of the apical junctional proteins DE-cadherin and Flamingo and also the basal membrane protein β-integrin in intracellular vesicles. By contrast, knockdown of PI3K (III) increased lateral membrane-localized Fasciclin III (Fas III). Importantly, loss-of-function mutation of Rbsn-5 recapitulated the aberrant localization phenotypes of β-integrin and Fas III, but not those of DE-cadherin and Flamingo. These results suggest that PI3K (III) differentially regulates localization of proteins at distinct membrane domains and that Rbsn-5 mediates only a part of the PI3K (III)-dependent processes

    FYVE-Dependent Endosomal Targeting of an Arrestin-Related Protein in Amoeba

    Get PDF
    International audienceBACKGROUND: Visual and β-arrestins are scaffolding proteins involved in the regulation of receptor-dependent intracellular signaling and their trafficking. The arrestin superfamilly includes several arrestin domain-containing proteins and the structurally related protein Vps26. In Dictyostelium discoideum, the arrestin-domain containing proteins form a family of six members, namely AdcA to -F. In contrast to canonical arrestins, Dictyostelium Adc proteins show a more complex architecture, as they possess, in addition to the arrestin core, other domains, such as C2, FYVE, LIM, MIT and SAM, which potentially mediate selective interactions with either lipids or proteins. METHODOLOGY AND PRINCIPAL FINDINGS: A detailed analysis of AdcA has been performed. AdcA extends on both sides of the arrestin core, in particular by a FYVE domain which mediates selective interactions with PI(3)P, as disclosed by intrinsic fluorescence measurements and lipid overlay assays. Localization studies showed an enrichment of tagged- and endogenous AdcA on the rim of early macropinosomes and phagosomes. This vesicular distribution relies on a functional FYVE domain. Our data also show that the arrestin core binds the ADP-ribosylation factor ArfA, the unique amoebal Arf member, in its GDP-bound conformation. SIGNIFICANCE: This work describes one of the 6 arrestin domain-containing proteins of Dictyostelium, a novel and atypical member of the arrestin clan. It provides the basis for a better understanding of arrestin-related protein involvement in trafficking processes and for further studies on the expanding roles of arrestins in eukaryotes

    Regional Endothermy in a Coral Reef Fish?

    Get PDF
    Although a few pelagic species exhibit regional endothermy, most fish are regarded as ectotherms. However, we document significant regional endothermy in a benthic reef fish. Individual steephead parrotfish, Chlorurus microrhinos (Labridae, formerly Scaridae) were tagged and their internal temperatures were monitored for a 24 h period using active acoustic telemetry. At night, on the reef, C. microrhinos were found to maintain a consistent average peritoneal cavity temperature 0.16±0.005°C (SE) warmer than ambient. Diurnal internal temperatures were highly variable for individuals monitored on the reef, while in tank-based trials, peritoneal cavity temperatures tracked environmental temperatures. The mechanisms responsible for a departure of the peritoneal cavity temperature from environmental temperature occurred in C. microrhinos are not yet understood. However, the diet and behavior of the species suggests that heat in the peritoneal cavity may result primarily from endogenous thermogenesis coupled with physiological heat retention mechanisms. The presence of limited endothermy in C. microrhinos indicates that a degree of uncertainty may exist in the manner that reef fish respond to their thermal environment. At the very least, they do not always appear to respond to environmental temperatures as neutral thermal vessels and do display limited, but significant, visceral warming

    Actin- and Dynamin-Dependent Maturation of Bulk Endocytosis Restores Neurotransmission following Synaptic Depletion

    Get PDF
    Bulk endocytosis contributes to the maintenance of neurotransmission at the amphibian neuromuscular junction by regenerating synaptic vesicles. How nerve terminals internalize adequate portions of the presynaptic membrane when bulk endocytosis is initiated before the end of a sustained stimulation is unknown. A maturation process, occurring at the end of the stimulation, is hypothesised to precisely restore the pools of synaptic vesicles. Using confocal time-lapse microscopy of FM1-43-labeled nerve terminals at the amphibian neuromuscular junction, we confirm that bulk endocytosis is initiated during a sustained tetanic stimulation and reveal that shortly after the end of the stimulation, nerve terminals undergo a maturation process. This includes a transient bulging of the plasma membrane, followed by the development of large intraterminal FM1-43-positive donut-like structures comprising large bulk membrane cisternae surrounded by recycling vesicles. The degree of bulging increased with stimulation frequency and the plasmalemma surface retrieved following the transient bulging correlated with the surface membrane internalized in bulk cisternae and recycling vesicles. Dyngo-4a, a potent dynamin inhibitor, did not block the initiation, but prevented the maturation of bulk endocytosis. In contrast, cytochalasin D, an inhibitor of actin polymerization, hindered both the initiation and maturation processes. Both inhibitors hampered the functional recovery of neurotransmission after synaptic depletion. Our data confirm that initiation of bulk endocytosis occurs during stimulation and demonstrates that a delayed maturation process controlled by actin and dynamin underpins the coupling between exocytosis and bulk endocytosis

    Predation life history responses to increased temperature variability

    Get PDF
    The evolution of life history traits is regulated by energy expenditure, which is, in turn, governed by temperature. The forecasted increase in temperature variability is expected to impose greater stress to organisms, in turn influencing the balance of energy expenditure and consequently life history responses. Here we examine how increased temperature variability affects life history responses to predation. Individuals reared under constant temperatures responded to different levels of predation risk as appropriate: namely, by producing greater number of neonates of smaller sizes and reducing the time to first brood. In contrast, we detected no response to predation regime when temperature was more variable. In addition, population growth rate was slowest among individuals reared under variable temperatures. Increased temperature variability also affected the development of inducible defenses. The combined effects of failing to respond to predation risk, slower growth rate and the miss-match development of morphological defenses supports suggestions that increased variability in temperature poses a greater risk for species adaptation than that posed by a mean shift in temperature

    Temperature Influences Selective Mortality during the Early Life Stages of a Coral Reef Fish

    Get PDF
    For organisms with complex life cycles, processes occurring at the interface between life stages can disproportionately impact survival and population dynamics. Temperature is an important factor influencing growth in poikilotherms, and growth-related processes are frequently correlated with survival. We examined the influence of water temperature on growth-related early life history traits (ELHTs) and differential mortality during the transition from larval to early juvenile stage in sixteen monthly cohorts of bicolor damselfish Stegastes partitus, sampled on reefs of the upper Florida Keys, USA over 6 years. Otolith analysis of settlers and juveniles coupled with environmental data revealed that mean near-reef water temperature explained a significant proportion of variation in pelagic larval duration (PLD), early larval growth, size-at-settlement, and growth during early juvenile life. Among all cohorts, surviving juveniles were consistently larger at settlement, but grew more slowly during the first 6 d post-settlement. For the other ELHTs, selective mortality varied seasonally: during winter and spring months, survivors exhibited faster larval growth and shorter PLDs, whereas during warmer summer months, selection on PLD reversed and selection on larval growth became non-linear. Our results demonstrate that temperature not only shapes growth-related traits, but can also influence the direction and intensity of selective mortality

    Systematic and Evolutionary Insights Derived from mtDNA COI Barcode Diversity in the Decapoda (Crustacea: Malacostraca)

    Get PDF
    Background: Decapods are the most recognizable of all crustaceans and comprise a dominant group of benthic invertebrates of the continental shelf and slope, including many species of economic importance. Of the 17635 morphologically described Decapoda species, only 5.4% are represented by COI barcode region sequences. It therefore remains a challenge to compile regional databases that identify and analyse the extent and patterns of decapod diversity throughout the world. Methodology/Principal Findings: We contributed 101 decapod species from the North East Atlantic, the Gulf of Cadiz and the Mediterranean Sea, of which 81 species represent novel COI records. Within the newly-generated dataset, 3.6% of the species barcodes conflicted with the assigned morphological taxonomic identification, highlighting both the apparent taxonomic ambiguity among certain groups, and the need for an accelerated and independent taxonomic approach. Using the combined COI barcode projects from the Barcode of Life Database, we provide the most comprehensive COI data set so far examined for the Order (1572 sequences of 528 species, 213 genera, and 67 families). Patterns within families show a general predicted molecular hierarchy, but the scale of divergence at each taxonomic level appears to vary extensively between families. The range values of mean K2P distance observed were: within species 0.285% to 1.375%, within genus 6.376% to 20.924% and within family 11.392% to 25.617%. Nucleotide composition varied greatly across decapods, ranging from 30.8 % to 49.4 % GC content. Conclusions/Significance: Decapod biological diversity was quantified by identifying putative cryptic species allowing a rapid assessment of taxon diversity in groups that have until now received limited morphological and systematic examination. We highlight taxonomic groups or species with unusual nucleotide composition or evolutionary rates. Such data are relevant to strategies for conservation of existing decapod biodiversity, as well as elucidating the mechanisms and constraints shaping the patterns observed.FCT - SFRH/BD/25568/ 2006EC FP6 - GOCE-CT-2005-511234 HERMESFCT - PTDC/MAR/69892/2006 LusomarBo
    corecore