258 research outputs found

    Poly(ethyl glyoxylate)-Poly(ethylene oxide) Nanoparticles: Stimuli- Responsive Drug Release via End-to-End Polyglyoxylate Depolymerization

    Get PDF
    The ability to disrupt polymer assemblies in response to specifi c stimuli provides the potential to release drugs selectively at certain sites or conditions in vivo. However, most stimuli-responsive delivery systems require many stimuli initiated events to release drugs. “ Self-immolative polymers” offer the potential to provide amplifi ed responses to stimuli as they undergo complete end-to-end depolymerization following the cleavage of a single end-cap. Herein, linker end-caps were developed to conjugate self-immolative poly(ethyl glyoxylate) (PEtG) with poly(ethylene oxide) (PEO) to form amphiphilic block copolymers. These copolymers were self-assembled to form nanoparticles in aqueous solution. Cleavage of the linker end-caps were triggered by a thiol reducing agent, UV light, H2 O2 , and combinations of these stimuli, resulting in nanoparticle disintegration. Low stimuli concentrations were effective in rapidly disrupting the nanoparticles. Nile red, doxorubin, and curcumin were encapsulated into the nanoparticles and were selectively released upon application of the appropriate stimulus. The ability to tune the stimuli-responsiveness simply by changing the linker end-cap makes this new platform highly attractive for applications in drug delivery

    Dendritic surface functionalization of nanomaterials: controlling properties and functions for biomedical applications

    Get PDF
    Uma grande variedade de nanomateriais tem demonstrado aplicações médicas promissoras, tais como liberação de fármacos e em imagens. Nestas aplicações, a superfície química dos materiais é crítica, uma vez que exerce papel importante na determinação da toxicidade e comportamento de biodistribuição do material. Aqui, nós revisamos a funcionalização de nanomateriais, como dendrons, como método eficiente de alterar a superfície química destes compostos, introduzindo novas propriedades e funções. Descritos aqui estão nanopartículas superparamagnéticas de óxido de ferro (do inglês, SPIO), com guanidinas dendríticas para aumentar seu transporte para o interior das células, úteis em imagens de ressonância magnética. A introdução de dendrons contendo hidroxilas, aminas, guanidinas, carboidratos e quelatos de Gd(III) periféricos em vesículas poliméricas (polymersomes) também está descrita. Esses grupos dendríticos permitem a modulação de toxicidade, captura celular, ligação à proteína e eficiência como agente de contraste, enquanto que, ao mesmo tempo, permitem a manutenção da estabilidade das vesículas poliméricas. Assim, essa abordagem é promissora para o desenvolvimento de grande variedade de materiais multifuncionais para aplicações farmacêuticas.A wide variety of nanomaterials have demonstrated promise in medical applications such as drug delivery and imaging. In these applications, the surface chemistry of the materials is critical as it plays an important role in determining the toxicity and biodistribution behavior of the material. We review here the functionalization of nanomaterials with dendrons as an efficient method to alter the surface chemistry of the materials, introducing new properties and functions. Described here is the functionalization of superparamagnetic iron oxide nanoparticles (SPIO) with dendritic guanidines to enhance their transport into cells for magnetic resonance imaging applications. The introduction of dendrons bearing peripheral hydroxyls, amines, guanidines, carbohydrates and Gd(III) chelates to polymer vesicles (polymersomes) is also described. These dendritic moieties allow for modulation of toxicity, cell uptake, protein binding, and contrast agent efficiency, while at the same time allowing the stabilities of the polymersomes to be maintained. Thus, this approach holds promise for the development of a wide range of multifunctional materials for pharmaceutical applications

    Synthesis, properties, and degradation of polyisobutylene-polyester graft copolymers

    Get PDF
    The development of copolymers is a promising approach for combining the favorable properties of two polymers and obtaining new properties of the combination. In this work, graft copolymers of polyisobutylene (PIB) and polycaprolactone (PCL) or poly(D,L-lactide) (PDLLA) were synthesized and studied. Amine terminated polyesters were synthesized and were grafted onto an activated PIB backbone synthesized from butyl rubber, a copolymer of isobutylene and 2 mol % isoprene. The polyester content was tuned from 15 to 44 wt % by varying the molar mass of the polyester blocks and the number of molar equivalents used in the grafting reaction. The graft copolymers with higher polyester content underwent nanoscale phase separation, as demonstrated by differential scanning calorimetry and atomic force microscopy imaging. This was found to provide enhanced mechanical properties such as increased tensile strength and Young’s modulus relative to the starting rubber or physical blends. Despite the significant polyester content of the graft copolymers and the susceptibility of the polyesters to degradation, the graft copolymers underwent negligible mass loss in 5 M NaOH over a period of 8 weeks. These results suggest that polyesters can be incorporated into PIB to tune and enhance its properties, while maintaining high chemical stability

    End-Capping Strategies for Triggering End-to-End Depolymerization of Polyglyoxylates

    Get PDF
    Polymers that undergo end-to-end depolymerization in response to the cleavage of a stimuli-responsive end-cap are promising for diverse applications from drug delivery to responsive coatings and plastics. It is critical that the end-cap is designed to respond to an appropriate stimulus for the application. In the current work, end-caps for triggering the depolymerization of poly(ethyl glyoxylate) (PEtG) were explored. First, a phenylboronate, a disulfi de, and an azobenzene were utilized to impart redox-responsive properties to PEtG. Then, methoxy-substituted trityl groups were used to provide sensitivity to mild acid. A multiresponsive platform was also introduced, allowing PEtG to respond to multiple stimuli, either simultaneously or independently. Incorporation of a cross-linkable trialkene endcap enabled the preparation of networks that could subsequently be depolymerized. Finally, high molar mass PEtG could be depolymerized by mechanical stimulation independent of the end-cap. It is anticipated that the versatility in end-capping strategies and potential depolymerization stimuli will not only expand PEtG’ s utility for different applications but also be useful for other classes of end-to-end depolymerizable polymers

    Controlled Polymerization of Ethyl Glyoxylate Using Alkyllithium and Alkoxide Initiators

    Get PDF
    The synthesis of poly(ethyl glyoxylate)s (PEtGs) by anionic polymerization was explored. PEtGs are a subclass of stimuli-responsive self-immolative polymers with promising properties for applications as coatings, sensors, and drug delivery vehicles. In this report, a new purification procedure for the preparation of highly pure ethyl glyoxylate (EtG), suitable for anionic polymerization reactions, and the first successful examples of controlled polymerization of EtG are described. n-BuLi, PhLi, and t-BuLi were employed as initiators under different experimental conditions and their behavior was examined using NMR spectroscopy, size exclusion chromatography, and thermal analysis to develop an optimized procedure. As functional alkoxide initiators, propargyl alkoxide was employed in optimization studies and poly(ethylene glycol) (PEG) dialkoxide was utilized for the direct synthesis of PEtG-PEG-PEtG copolymers. The new polymerization method revealed many features of controlled polymerization reactions, yielding PEtGs with predictable molar masses and relatively low dispersity values

    Post-polymerization functionalization of poly (ethylene oxide)–poly (β-6-heptenolactone) diblock copolymers to tune properties and self-assembly

    Get PDF
    Polyester-based amphiphilic block copolymers and their nanoassemblies are of significant interest for a wide range of applications due to the degradability of the polyester block. However, the commonly used polyesters lack functional groups on their backbones, limiting the possibilities to chemically modify these polymers. Described here are new poly(ethylene oxide) (PEO)–poly(β-6-heptenolactone) (PHEL) block copolymers having pendant alkenes at each repeat unit on the PHEL block. First, the self-assembly of these block copolymers in aqueous solution was studied and it was found that they formed solid nanoparticles and vesicles depending on the relative block lengths. Next the alkene moieties of the block copolymer were modified with either hydrophilic or hydrophobic pendant groups using thiol–ene reactions, allowing the hydrophilic mass fractions and consequently the self-assembled morphologies to be tuned, accessing both smaller nanoparticles and cylindrical assemblies. It was also demonstrated that the anti-cancer drug paclitaxel or a fluorescent rhodamine dye could be easily conjugated to the block copolymers and the self-assembly of these conjugates was explored. Overall, the results of this study demonstrate that PEO-PHEL block copolymers can serve as versatile backbones for the preparation of functional, polyester-based materials

    Self-Healing Polyphosphonium Ionic Networks

    Get PDF
    Self healing, ionically crosslinked networks were prepared from poly(acrylic acid) (PAA) and poly(triethyl(4-vinylbenzyl)phosphonium chloride (P-Et-P) and their properties were studied. Three different ratios of PAA/P-Et-P were incorporated into the networks by varying the addition orders of the components. Swelling of the networks increased with increasing NaCl concentration when they were immersed in aqueous solution. All networks retained their structural integrity in 0.1 M NaCl. Studies of the rheological and tensile properties of the networks swelled in 0.1 M NaCl showed that PAA\u3eP-Et-Pexhibited high elongation and viscoelastic properties suitable for self-healing with a relaxation time of ~30 s, whereas the other networks exhibited predominantly elastic behavior. The moduli were similar to those of soft tissues. Self-healing of PAA\u3eP-Et-Pin 0.1 M NaCl was demonstrated through repair of a 0.5 mm diameter puncture in the material whereas healing was incomplete for the other networks and also for PAA\u3eP-Et-Pin the absence of NaCl. Healing after completely severing a tensile testing sample showed significant recovery of the modulus, strength, and elongation. The properties of these materials and their ability to self-heal in low and physiologically relevant salt concentrations make them promising candidates for a variety of applications, particularly in the biomedical area

    Designing polymers with stimuli-responsive degradation for biomedical applications

    Get PDF
    Early biomedical applications of polymers were in areas such as joint replacements and often involved durable polymers. However, biodegradable polymers are increasingly being used to perform temporary functions such as drug delivery or supporting cells, after which they can break down and be eliminated from the body. Polymers that degrade specifically in response to stimuli offer additional opportunities to control when and where this degradation occurs, enabling enhanced functions such as site-specific drug release and the early detection of disease. In this article, we will discuss recent advancements in the design, preparation, and application of stimuli-responsive polymer degradation. In particular, we will highlight the introduction of new linkers, and advanced multifunctional systems. Recent approaches towards maximizing the responses to stimuli, including self-immolative and self-amplifying polymers, will also be highlighted. Finally, some of the challenges in applying these more complex, functional polymers will be discussed, along with important areas for future research

    Depolymerization of Trityl End-capped Poly(ethyl glyoxylate): Potential Applications in Smart Packaging

    Get PDF
    The temperature-dependent depolymerization of self-immolative poly(ethyl glyoxylate) (PEtG) capped with triphenylmethyl (trityl) groups was studied and its potential application for smart packaging was explored. PEtGs with four different trityl end-caps were prepared and found to undergo depolymerization to volatile products from the solid state at different rates depending on temperature and the electron-donating substituents on the trityl aromatic rings. Through the incorporation of hydrophobic dyes including Nile red and IR-780, the depolymerization was visualized as a color change of the dye as it changed from a dispersed to aggregated state. The ability of this platform to provide information on thermal history through an easily readable signal makes it promising in smart packaging applications for sensitive products such a food and other cargo that is susceptible to degradation

    Phosphonium-Functionalized Polymer Micelles with Intrinsic Antibacterial Activity

    Get PDF
    New approaches to treat bacterial infections are badly needed to address the increasing problem of antibiotic resistance. This study explores phosphonium-functionalized block copolymer micelles as intrinsically antibacterial polymer assemblies. Phosphonium cations with varying alkyl lengths were conjugated to the terminus of a poly(ethylene oxide)− polycaprolactone block copolymer, and the phosphonium-functionalized block copolymers were self-assembled to form micelles in aqueous solution. The size, morphology, and ζ -potential of the assemblies were studied, and their abilities to kill Escherichia coli and Staphylococcus aureus were evaluated. It was found that the minimum bactericidal concentration depended on the phosphonium alkyl chain length, and different trends were observed for Gram-negative and Gram-positive bacteria. The most active assemblies exhibited no hemolysis of red blood cells above the bactericidal concentrations, indicating that they can selectively disrupt the membranes of bacteria. Furthermore, it was possible to encapsulate and release the antibiotic tetracycline using the assemblies, providing a potential multimechanistic approach to bacterial killing
    corecore