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Abstract 

The ability to disrupt polymer assemblies in response to specific stimuli provides the potential to 

release drugs selectivity at certain sites or conditions in vivo. However, most stimuli-responsive 

delivery systems require many stimuli-initiated events in order to release drugs. 

“Self-immolative polymers” offer the potential to provide amplified responses to stimuli as they 

undergo complete end-to-end depolymerization following the cleavage of a single end-cap. 

Herein, linker end-caps were developed to conjugate self-immolative poly(ethyl glyoxylate) 

(PEtG) with poly(ethylene oxide) (PEO) to form amphiphilic block copolymers. These 

copolymers were self-assembled to form nanoparticles in aqueous solution. Cleavage of the 

linker end-caps were triggered by a thiol reducing agent, UV light, H2O2, and combinations of 

these stimuli, resulting in nanoparticle disintegration. Low stimuli concentrations were effective 

in rapidly disrupting the nanoparticles. Nile red, doxorubin and curcumin were encapsulated into 

the nanoparticles and were selectively released upon application of the appropriate stimulus. The 

ability to tune the stimuli-responsiveness simply by changing the linker end-cap makes this new 

platform highly attractive for applications in drug delivery.   
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Introduction 

Amphiphilic block copolymers can self-assemble in aqueous solution to form a wide range of 

morphologies including spherical micelles, cylindrical micelles, and vesicles.1-3 Such assemblies 

have been of significant interest in recent years for the encapsulation and controlled release of 

drugs.4-6 These delivery vehicles can enhance the water-dispersibility of hydrophobic drugs and 

selectively target them to sites of action such as tumors via the enhanced permeation and 

retention effect or using active targeting groups.7-9 Ideally, the assembly would be stable in the 

blood stream, but selectively release its payload at the target site. To achieve this, polymer 

assemblies responsive to the conditions associated with various disease states have been 

developed. For example, systems responsive to the acidic pH encountered in tumor tissue or 

within the endosomal compartments of cells have been introduced.10-13 Reducing conditions, 

associated with the intracellular environment and hypoxic tumor tissue, have also been used to 

disrupt polymer assemblies.14-16 Furthermore, polymer systems responsive to reactive oxygen 

species such as H2O2, associated with inflammation and cancer have also been developed.17,18 

Most of these systems require the action of the stimulus at many sites along the polymer 

backbone in order to change the properties of the polymer, resulting in drug release. 
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Over the past decade, a new class of degradable polymers that undergoes end-to-end 

depolymerization in response to the cleavage of a stimuli-responsive end-cap from the polymer 

terminus was introduced. Often termed “self-immolative polymers”, these macromolecules 

require the action of a single stimulus to completely depolymerize the polymer.19-21 This 

provides the potential for signal amplification at low stimulus concentrations. End-caps 

responsive to stimuli such as light22-24, H2O2
25,26, thiols24,27, and mildly acidic conditions28 have 

been reported and have been used in applications such as sensors25,29,30 and responsive coatings 

or plastics31-33. The incorporation of a second polymer block has provided amphiphilic 

copolymers that self-assembled to form nanoparticles such as micelles and vesicles.22,30,34 

However, the potential of these systems for drug delivery has been explored only to a very 

limited extent. In addition, these examples involved depolymerization to species such as quinone 

methides and aza-quinone methides, which are likely toxic.35 

Our group recently reported poly(ethyl glyoxylate) (PEtG) as a self-immolative 

polymer.22,28,33 As shown in Figure 1, the depolymerization products are ultimately ethanol and 

glyoxylic acid, a metabolic intermediate that can be processed in the liver.36 Studies have 

suggested that this degradation product should exhibit low toxicity both to mammals and the 

environment,37 making PEtG a promising polymer for drug delivery and other applications. 

Using a UV light-responsive linker end-cap, we prepared amphiphilic block copolymers of PEtG 

and poly(ethylene oxide) (PEO) that self-assembled to form light-responsive nanoparticles.22 In 
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addition, we recently reported end-caps responsive to H2O2, thiols, weak acids, and multiple 

stimuli.28 However, these PEtG homopolymers were not water-soluble and the depolymerization 

was studied only in 9:1 CD3CN:D2O. Here we describe the development of linker end-caps 

responsive to biologically relevant stimuli, and their application for the preparation of 

PEO-PEtG-PEO block copolymers. These block copolymers are self-assembled to form 

nanoparticles and the response of these nanoparticles to stimuli is studied. It is demonstrated that 

very low amounts of stimulus are sufficient to disrupt the assemblies. Furthermore, by simply 

changing the linker end-cap, these nanoparticles can be easily tuned to release drug molecules 

such as doxorubicin (Dox) and curcumin (Cur) using different stimuli such as light, thiols, and 

H2O2. 

 

 

Figure 1. Depolymerization of PEtG to ethyl glyoxylate (EtG), hydration to form ethyl 

glyoxylate hydrate (EtGH), and hydrolysis to glyoxylic acid (GA) and ethanol.  

 

Experimental section 



 6 

General materials and procedures. Compounds 1,28 2,22 5,22 9,28 azide-terminated PEO 

(PEO-N3),38 thiol-terminated PEO (PEO-SH),39 and polymers PEtG-nitrobenzyl22, 

PEtG-disulfide,28 and PEtG-nitrobenzyl-PEO22 were previously reported and the same batches 

were used. All other synthesis procedures are included in the supporting information. Ultrapure 

water was obtained from a Barnstead EASYpure II system. SEC was performed in THF at 1 

mL/min using a Viscotek GPC Max VE2001 solvent module equipped with a Viscotek VE3580 

RI detector operating at 30°C, two Agilent Polypore (300x7.5mm) columns, and a Polypore 

guard column (50 x 7.5mm). A calibration curve was obtained using poly(methyl methacrylate) 

standards. Thermogravimetric analysis (TGA) was performed on Q50 from TA Instruments with 

a heating rate of 10 ºC/min from 35-800 ºC under nitrogen. Spectra/Por regenerated cellulose 

membranes were used for dialyses. Dynamic light scattering (DLS) was performed using a 

Zetasizer Nano ZS instrument from Malvern Instruments at 25 ºC at a concentration of 0.8 

mg/mL of polymer assemblies. TEM imaging was done using a Phillips CM10 microscope 

operating at an acceleration voltage of 80 kV. 3 µL of micelle suspension (0.3 mg / mL) was 

placed onto a copper grid. The resulting sample was air-dried for 24 h before imaging. At least 

30 particles were measured to obtain the mean particle diameters. Fluorescence spectra were 

obtained using a QM-4 SE spectrometer from Photon Technology International (PTI) equipped 

with double excitation and emission monochromators. UV-visible spectra were obtained on a 

Varian UV/VIS Cary 300 spectrophotometer. 
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Nanoparticle preparation. 8 mg of block copolymer was dissolved in 1.0 mL of DMSO with 

stirring overnight. 0.1 mL of the solution was injected quickly into 0.9 mL of rapidly stirring 

deionized water. After stirring for 0.5 h, the suspension was dialyzed using a 3 kg/mol molecular 

weight cut-off (MWCO) membrane against deionized water (1 L, 24 h, water changed once at 

~12 h) to remove DMSO. Each nanoparticle system was prepared in triplicate. 

Nanoparticle degradation studied by DLS. Nanoparticles were prepared as above, except that 

the suspensions were dialyzed against either 100 mM, pH 7.4 phosphate buffer or 100 mM, pH 

5.0 citrate buffer (1 L, 24 h, water changed once at ~12 h). The polymer concentration was ~ 0.8 

mg/mL. The count rate was measured by DLS while fixing the attenuator at 7. DTT or H2O2 

were added at concentrations ranging from 0.05 – 10 mM or not added in the case of controls. 

Irradiation with UV light was performed in an ACE Glass photochemistry cabinet containing a 

mercury light source (450 W bulb, 2.8 mW/cm2 of UVA radiation) for 20 min. After applying 

the stimuli, the samples were incubated at 37 °C in the dark and the DLS count rate was 

measured at selected time points. PEtG-nitrobenzyl-PEO and PEtG-multi-PEO were studied 

in triplicate. 

Nanoparticle depolymerization studied by NMR spectroscopy. 16 mg of copolymer was 

dissolved in 0.8 mL of DMSO-d6. 0.2 mL of the resulting solution was rapidly injected into 1.0 

mL of 100 mM, pH 7.4 phosphate- or 100 mM, pH 5.0 citrate-buffered D2O. After stirring for 

0.5 h, the nanoparticle suspension was transferred into NMR tubes, and initial 1H NMR spectra 
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were obtained. The corresponding stimuli were applied as described above for the DLS study. 

The samples were incubated at 37 °C and NMR spectra were obtained at time points over 1 or 2 

days. The integration of the PEO peak at 3.6 ppm was set to 364 for the PEO 2000 g/mol 

conjugates or 136 for the 750 g/mol conjugate. The integration of the peaks at 1.0-1.2 ppm 

corresponding to the CH3 group on released EtGH and its ethanol hydrolysis product was 

measured (ICH3 aq) and compared its value in CDCl3 (ICH3 CDCl3) (it corresponds to the CH3 of the 

ethyl group on PEtG in this case) where both blocks are fully soluble, with the integration of the 

PEO peak set to 364 or 136. The extent of depolymerization is determined as follows: % 

depolymerization = (ICH3 aq/ ICH3 CDCl3)x100%.  

Loading and release of nile red. Nanoparticles were prepared as described above in 100 mM, 

pH 7.4 phosphate buffer or 100 mM, pH 5.0 citrate buffer (1 L, 24 h, water changed once at ~12 

h) at 0.8 mg/mL of polymer. 29 µL of a 0.1 mg/mL solution of nile red in CH2Cl2 was added to 

each of a series of vials and then the solvent was evaporated to provide a thin film of nile red. To 

each vial, 1.5 mL of nanoparticle suspension was added, and the vials were gently shaken for 16 

h to incorporate nile red into the nanoparticles. Using an excitation wavelength of 540 nm, the 

initial emission intensity of nile red was measured at 600 nm. Stimuli were then applied as 

described above for the DLS study and the samples were incubated at 37 °C in the dark. The 

emission intensity at 600 nm was measured at selected time points. 
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Loading and release of Dox. 10 mg of Dox (17.2 µmol) and 1.74 mg of triethylamine (17.2 

µmol) were dissolved in 2 mL DMSO and stirred for 10 min, then 16 mg of 

PEtG-nitrobenzyl-PEO was added and the solution was stirred for 5 h. It was then injected 

quickly into 18 mL of deionized water and stirred for 15 min. The suspension was dialyzed 

against water (1 L, 48 h, water changed every ~12 h) using a 3500 g/mol MWCO membrane to 

remove free Dox and DMSO. To calculate the Dox content and loading efficiency, a portion of 

the suspension was lyophilized, then a measured mass of the product was dissolved in DMF. The 

absorbance of the DMF solution was measured by UV-vis spectroscopy at 500 nm and the Dox 

concentration was calculated based on a Dox calibration curve (e = 46820 L/g×cm). Loading 

efficiency = (mass of loaded drug/mass of actual drug used)´100%. Drug content = (mass of 

loaded drug/mass of nanoparticles with drug)´100%. Dox release was measured in 100 mM, pH 

5.0 citrate or 100 mM, pH 7.4 phosphate buffer at polymer concentrations of 0.8 and 0.2 mg/mL 

respectively. 5 mL sample was irradiated with UV light as described above but for 3 h, while 

another 5 mL was kept in the dark. At each pH, the initial absorption was measured at 500 nm. 

Each sample was then transferred into a dialysis membrane (3500 g/mol MWCO) and dialyzed 

in the dark against the corresponding buffer solutions (1 L, 48 h, water changed every ~12 h) at 

37 oC. The absorbance of the samples inside the dialysis membrane were measured at selected 

times over 2 or 4 days to quantify the percentage of released drug.  
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Loading and release of Cur. 10 mg of PEtG-boronate-PEO, PEtG-disulfide-PEO, or 

PEtG-nitrobenzyl-PEO (control) and 2 mg of Cur were dissolved in 1 mL DMF and stirred 

overnight. The solution was then injected into 9 mL of stirring deionized water and stirred for an 

additional 1 min. The suspension was then dialyzed against 100 mM, pH 7.4 phosphate buffer (1 

L, 16 h, buffer changed at ~8 h) using a 3500 g/mol MWCO membrane. It was then filtered 

through a 0.45 µm syringe filter (Acrodisc Syringe Filter Non-Pyrogenic 13 mm, Pall Life 

Science) to remove any unencapsulated and precipitated drug. The procedure for calculation of 

the drug content and loading efficiency is provided in the supporting information. To measure 

the drug release rates, 50 µL of the resulting nanoparticle suspension was diluted into 2 mL of 

DMF to fully dissolve the copolymer and Cur and the absorbance at 428 nm was used to 

calculate the initial Cur concentration (e = 5740 L/g×cm). The relevant stimuli (H2O2 or DTT; 0.5 

or 5 mM) were added (or not added for controls) to the resulting nanoparticles in buffer (5 mL 

per sample) and they were incubated in the dark at 37 oC. At selected time points, ~0.2 mL of the 

suspension was removed and filtered through a 0.45 µm syringe filter to remove the released 

Cur. 50 µL of the filtered suspension was then diluted into 2 mL of DMF, resulting in full 

dissolution. The absorbance of the DMF solution at 428 nm was measured to determine the 

percentage of drug remaining in the nanoparticles.  
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Results and Discussion 

Synthesis of stimuli-responsive PEtG-PEO triblock copolymers  

In the current work, UV light, reducing conditions (i.e., thiols), H2O2 and combinations of these 

stimuli were targeted as triggers for initiating the depolymerization of PEO-PEtG-PEO 

assemblies for the release of drugs. As described above, thiols and H2O2 are stimuli that are 

relevant to pathological conditions such as inflammation and cancer.40,41 Light is a stimulus that 

can be easily applied in the laboratory with good spatiotemporal control, and can potentially be 

extended to two-photon processes for application in vivo.42 Based on previous work, 

chloroformates can effectively end-cap PEtG,22 so end-caps containing a chloroformate along 

with the stimuli-responsive group and a site for the conjugation of the PEO block were designed.  

The structures of the linker end-caps employed in the current work are shown in Figure 2. 

We have previously reported end-caps 128 and 222. End-cap 1 contains a disulfide, which can 

serve both as a site for the conjugation of PEO via thiol exchange and as a reduction-sensitive 

site. Reaction with a thiol trigger releases a thiol on the end-cap that cyclizes, releasing uncapped 

PEtG (Scheme S1a). End-cap 2 contains an alkyne for conjugation of the PEO block using a 

Cu(I)-assisted azide-alkyne cycloaddition (CuAAC) and a light-responsive o-nitrobenzyl moiety, 

that cleaves at the benzylic site to release uncapped PEtG (Scheme S1b). End-cap 3 contains an 

alkyne for CuAAC and a phenylboronate that is sensitive to H2O2. In the presence of H2O2, the 

boronate is cleaved. This releases the phenol, that undergoes a 1,6-elimination-decarboxylation, 
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followed by a 1,4-elmination-decarboxylation to release uncapped PEtG (Scheme S1c). Finally, 

end-cap 4 contains an alkyne as well as both the boronate and o-nitrobenzyl groups, allowing it 

to release uncapped PEtG in response to either H2O2 or UV light by a series of 

elimination-decarboxylation reactions (Scheme S1d). 

 

Figure 2. Chemical structures of linker end-caps each containing a chloroformate, one or more 

stimuli-responsive moieties, and a site for conjugation of PEO. 

 

End-caps 128 and 222 were prepared as previously reported. The preparation of end-cap 3 

began with reduction of the nitro group in the o-nitrobenzyl alcohol 522 using SnCl2 to afford the 

aniline 6 (Scheme 1). Selective reaction of the chloroformate 743 with the aniline group in 6 

provided compound 8. Finally, activation with phosgene in THF/toluene provided end-cap 3. 

Recently, we reported chloroformate 9 as an end-cap that was responsive to both UV light and 

H2O2.28 9 was reacted selectively with the aniline group in compound 6 to afford compound 10, 

which was then activated with phosgene to provide end-cap 4 (Scheme 2).  
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Scheme 1. Synthesis of end-cap 3. 

 

Scheme 2. Synthesis of end-cap 4. 

Following the previously reported procedure, PEtG was synthesized by the polymerization of 

freshly distilled ethyl glyoxylate in CH2Cl2 at -20 ºC in the presence of catalytic NEt3 (Scheme 

3).22 End-cap and additional NEt3 were then added at -20 ºC to end-cap the polymer and then the 

reaction was gradually warmed to room temperature. Capping with compounds 1, 2, 3, and 4, 

provided PEtG-disulfide,28 PEtG-nitrobenzyl,22 PEtG-boronate, and PEtG-multi 

respectively. The polymers have end-caps at each terminus because EtGH generated from trace 
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H2O still present in the monomer after distillation initiates the polymerization. The PEtGs were 

purified by precipitation in methanol, except for PEtG-multi, which did not precipitate in 

methanol and was instead purified by dialysis.  

 

Scheme 3. Synthesis of end-capped PEtGs. 

The polymers were characterized by 1H NMR spectroscopy, SEC, and TGA. NMR spectra 

were consistent with the proposed structures, although it was difficult to detect the end-cap peaks 

due to the high degrees of polymerization. Based on SEC analysis relative to PMMA standards, 

the molar masses of PEtG-disulfide, PEtG-nitrobenzyl, and PEtG-boronate ranged from 

26-48 kg/mol and the dispersities (Đ) ranged from 1.4-2.1 (Table 1). PEtG-multi had a 
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somewhat lower Mn of 6.3 kg/mol, likely due to the poor solubility of end-cap 4 as well as high 

steric hindrance. It is possible that some depolymerization occurred before complete end-capping 

could be achieved. TGA showed that all of the polymers were quite thermally stable with onset 

degradation temperatures (To) greater than 160 ºC. This confirmed complete end-capping of the 

isolated polymers as uncapped PEtG is thermally unstable and begins depolymerizing almost 

immediately upon heating.22  

Table 1. Properties of PEtG with different linker end-caps and PEO-PEtG-PEO copolymers. 

aThese polymers have been previously reported.22 

Polymer Mn (SEC) 

(kg/mol) 

Đ To 

(°C) 

PEtG-disulfidea 26 1.4 191 

PEtG-nitrobenzyla 42 2.1 - 

PEtG-boronate 48 1.5 165 

PEtG-multi 6.3 1.6 204 

PEtG-disulfide-PEO 29 1.4 179 

PEtG-nitrobenzyl-PEOa 40 2.1 203 

PEtG-boronate-PEO 49 1.7 181 

PEtG-multi-PEO 7.7 1.5 164 
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The next step was the conjugation of PEO to the reactive functional groups on the end-caps. 

PEO was selected as the hydrophilic block because it can be easily functionalized at its terminus 

and provides good water-dispersibility and biocompatibility in drug delivery applications.44,45 In 

previous work, small spherical nanoparticles were formed from a PEO-PEtG-PEO triblock 

copolymer with a hydrophilic mass fraction (f) of 0.10, where f = mass of PEO/(mass of PEO + 

mass of PEtG).22 Therefore, similar f values were targeted for the current work. While vesicles or 

larger particles would often be expected at such a low f values,1,46 this was attributed to the 

hydrophilicity of PEtG in comparison with other common hydrophobic blocks such as 

polybutadiene and polycaprolactone. PEtG-disulfide was coupled with PEO-SH via a disulfide 

exchange reaction in DMF to afford PEtG-disulfide-PEO (Scheme 4). PEtG-nitrobenzyl and 

PEtG-boronate were coupled to 2000 g/mol PEO-N3 by CuAAC in DMF to afford 

PEtG-nitrobenzyl-PEO and PEtG-boronate-PEO respectively. Because of its lower initial Mn, 

PEtG-multi was coupled with 750 g/mol PEO-N3 to provide PEtG-multi-PEO. In each case, 

the excess PEO was removed by dialysis and washing with water. 
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Scheme 4. Synthesis of PEO-PEtG-PEO copolymers a) PEtG-disulfide-PEO, b) 

PEtG-nitro-PEO, c) PEtG-boronate-PEO, and d) PEtG-multi-PEO. 

The purified block copolymers were characterized by 1H NMR spectroscopy, SEC, and TGA. 

Removal of uncoupled PEO was confirmed by SEC as no peaks corresponding to free PEO were 

observed (Figures S15-S17). Only small increases in the Mns for the block copolymers relative to 

the starting PEtGs were observed and there were no significant changes in their Đ values. Based 

on the integrations of the PEO peak relative to those of the PEtG in the 1H NMR spectra, the 

CuAAC provided full conversion of the terminal alkynes to triazoles (Figure S13-S14). The f 

values for these polymers were calculated as 0.09 and 0.08 for PEtG-nitrobenzyl-PEO and 
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PEtG-boronate-PEO respectively (Table 2). PEtG-multi-PEO had a higher f value of 0.20 due 

to the much lower initial Mn of the PEtG block. On the other hand, the disulfide exchange 

reaction resulted in only ~50% conversion of the dithiopyridyl groups (Figure S12). This was 

deemed sufficient for nanoparticle formation as PEtG-disulfide-PEO had an f value of 0.08, 

very similar to that of the other copolymers. The To values for the block copolymers were similar 

to those of PEtG, although a 2-step degradation process was observed, with the first phase 

corresponding to PEtG and the second corresponding to PEO (Figures S19).  

 

Table 2. Hydrophilic mass fractions (f) of the block copolymers and corresponding 

characterization of self-assembled nanoparticles by DLS and CAC measurement. Errors on the 

measurements correspond to the standard deviations. 

Copolymer f  Mean diameter 

measured by 

TEM (nm) 

Z-average 

diameter (nm) 

PDI CAC  

(µg/mL) 

PEtG-disulfide-PEO 0.08 55 ± 16 83 ± 1 0.19 ± 0.02 40 

PEtG-nitrobenzyl-PEO 0.10 53 ± 17 82 ± 2 0.17 ± 0.03 32 

PEtG-boronate-PEO 0.08 64 ± 26 85 ± 11 0.22 ± 0.05 32 

PEtG-multi-PEO 0.20 47 ± 7 47 ± 9 0.18 ± 0.05 25 
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Self-assembly of PEtG-PEO triblock copolymers in aqueous solution 

Self-assembly of each triblock copolymer was achieved by dissolving the polymer in DMSO and 

then injecting this solution into rapidly stirring water. The DMSO was then removed by dialysis. 

The hydrodynamic diameters and polydispersity indices (PDIs) of the resulting nanoparticles 

were measured by DLS (Figures S20-S23). The Z-average diameters of the nanoparticles ranged 

from 47 nm to 83 nm (Table 2). PEtG-multi-PEO formed the smallest assemblies, likely due to 

its relatively short block lengths and higher f value, while all other assemblies were of similar 

size. The PDIs ranged from 0.17 to 0.22, suggesting that the nanoparticles had reasonably narrow 

size distributions. TEM confirmed that the assemblies were solid, spherical particles (Figure 3). 

The mean diameters measured from the TEM images were smaller than those measured by DLS 

(Table 2). This can be attributed to the particles being in the dry rather than hydrated state. 

Furthermore, even a small fraction of larger particles can significantly influence the Z-average 

diameter in DLS, due to the size dependence of the scattered light intensity. The critical 

aggregation concentrations (CACs) of the block copolymers were determined through the 

incorporation of the fluorescent probe nile red.47 The CAC values were all similar, ranging from 

25 - 40 µg/mL. We also investigated the stabilities of the assemblies in mouse serum. Each 

system was stable for 24 h, and only the PEtG-boronate-PEO nanoparticles underwent some 

degradation over 96 h, with a ~30% reduction in count rate measured by DLS (Figure S24).  
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Figure 3. TEM images of nanoparticles formed from a) PEtG-disulfide-PEO, b) 

PEtG-nitrobenzyl-PEO, c) PEtG-boronate-PEO, and d) PEtG-multi-PEO. 

 

Stimuli-responsive properties of the nanoparticles 

Depolymerization of the nanoparticles in response to stimuli was studied using DLS and NMR 

spectroscopy. For DLS, the nanoparticles were prepared as described above and were dialyzed 

into 100 mM, pH 7.4 phosphate buffer unless otherwise indicated. After introduction of the 

stimulus, the nanoparticles were incubated at 37 °C. DLS can provide an indication of 

nanoparticle disintegration because the scattered light intensity, measured as the mean count rate, 

is proportional to the number of scattering species and their sizes. Disintegration of the micelles 

was expected to result in a decrease in the mean count rate. 1H NMR spectroscopy was used to 

confirm that the disassembly of the nanoparticles was induced by the depolymerization of the 
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PEtG block. For this experiment, the assemblies were prepared by injection of a DMSO-d6 

solution of the polymer into pH 7.4 phosphate- or pH 5.0 citrate-buffered D2O (D2O:DMSO-d6 = 

5:1). For practical reasons, the DMSO-d6 was not removed. Prior to depolymerization, signals 

from the PEtG block were not observed in the NMR spectra because PEtG was packed into the 

nanoparticle core, resulting in very long relaxation times. However, upon depolymerization, 

peaks corresponding to the depolymerization product EtGH were observed and the percent 

depolymerization was measured based on the integration of peaks corresponding to this product 

relative to that of PEO. 

 The depolymerization of PEtG-disulfide-PEO nanoparticles was studied in the presence of 

varying concentrations of DTT, a commonly used thiol-based reducing agent. A reduction in 

count rate to less than 5% its initial value was observed in 3 h at 10 mM DTT (Figure 4a). The 

particle diameter remained constant over the first hour, then became multimodal and difficult to 

measure as the count rate became very low (Figure S25). The concentration of the thiol-based 

reducing agent glutathione has been reported to be as high as 15 mM in cancer cells,48 so the 

nanoparticles exhibit responsive behavior at physiologically-relevant reducing agent 

concentrations. This is particularly significant because when depolymerization of the 

homopolymer PEtG-disulfide was studied in 9:1 CD3CN:H2O, 100 mM DTT was required 

because much of the DTT was trapped by reaction with ethyl glyoxylate.28 The current results 

show that this trapping occurs to much less extent in the fully aqueous system where water 
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competes more effectively as a nucleophile. However, it must also be noted that DTT is a 

stronger reducing agent than glutathione, so higher concentrations of glutathione would be 

required to achieve the same results as for DTT.49 Below 10 mM DTT, the rate of nanoparticle 

degradation depended on the DTT concentration. At 1 mM DTT and below, the diameter did not 

change significantly as the count rate decreased over 48 h, suggesting that some assemblies were 

still present (Figure S25). In the absence of DTT, the particles were stable for ~30 h, after which 

some degradation occurred, likely as a result of hydrolysis of the carbonate on the end-cap. As an 

additional control, PEtG-nitro-PEO nanoparticles, that were not designed to respond to DTT, 

were also exposed to 10 mM DTT. This system was stable for the first 10 h, after which slow 

degradation occurred. This degradation can arise from the cleavage of the carbonate connecting 

the end-cap, which may be assisted by nucleophilic DTT. However, the effect of 10 mM DTT on 

PEtG-nitro-PEO nanoparticles was clearly much less than on PEtG-disulfide-PEO 

nanoparticles. When the depolymerization was monitored by NMR spectroscopy at a 

concentration of 10 mM DTT, the rate was found to be similar to that observed by DLS (Figure 

4b) and the depolymerization product was a mixture of EtGH and the DTT adduct that was 

characterized in our previous work28 (Figure 4c). 
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Figure 4. Stimuli-responsive properties of PEtG-disulfide-PEO nanoparticles: a) % Initial 

count rate versus time (measured by DLS) for nanoparticles exposed to varying concentrations of 

DTT, b) % Depolymerization versus time for PEtG-disulfide-PEO nanoparticles in 5:1 pH 7.4, 

phosphate buffered D2O:DMSO-d6 in the absence and presence of 10 mM DTT (measured by 

NMR spectroscopy). c) 1H NMR spectra (400 MHz) of PEtG-disulfide-PEO nanoparticles in 

the same solvent. Peaks corresponding to the depolymerization products EtGH and the DTT 

adduct appear after the addition of 10 mM DTT.  

 

We have previously studied the depolymerization of PEtG-nitrobenzyl-PEO nanoparticles 

at pH 7.4 by NMR spectroscopy, but we probed this in further detail here by DLS and also 

studied the depolymerization at pH 5.0 (100 mM citrate buffer). To cleave the nitrobenzyl linker 

end-cap, samples were irradiated with 2.8 mW/cm2 of UVA light for 20 min. As shown in Figure 

5a, after UV irradiation and incubation at 37 °C, a rapid decrease in the count rate was observed 

to less than 10% the initial value within 1 h at pH 7.4. The decrease was slower at pH 5.0, 

requiring 6 h to reach ~20% the initial value. This pH dependence arises because 

depolymerization occurs via hemiacetal breakdown, which can be catalyzed by acid or base, and 

exhibits a rate minimum at mildly acidic pH.50 When PEtG-nitrobenzyl-PEO nanoparticles 

were not irradiated, there was no significant change in the count rate over 6 h. As an additional 

control experiment, non-light-sensitive PEtG-disulfide-PEO assemblies were also irradiated. 
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No significant perturbations in count rate were observed. NMR spectroscopy in 5:1 

D2O:DMSO-d6 showed that depolymerization of PEtG-nitrobenzyl-PEO to EtGH occurred 

following irradiation at a rate similar to that suggested by DLS (Figure S27). It also confirmed 

that the depolymerization was faster at pH 7.4 and that depolymerization did not occur to any 

significant extent without irradiation (Figures S27-S29). Overall, these results confirm that 

PEtG-nitrobenzyl-PEO nanoparticles can be selectively degraded by UV light. 
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Figure 5. % Initial count rate, measured by DLS, versus time for nanoparticles and their 

corresponding controls with or without stimuli: a) PEtG-nitrobenzyl-PEO nanoparticles with 

UV light, b) PEtG-boronate-PEO with H2O2, c) PEtG-multi-PEO with H2O2, UV light, or 
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both. The study was carried out at pH 7.4, except for a) which was also performed at pH 5.0. The 

temperature was 37 °C. Error bars in a) and c) represent the standard deviation on 3 samples. 

 

PEtG-boronate-PEO nanoparticles were studied in the presence of varying concentrations 

of H2O2. As shown in Figure 5b, even 0.05 mM H2O2 was able to induce an effect on the 

nanoparticles with a reduction in the count rate to ~70% its initial value over 48 h. This 

corresponds to less than 2 molar equiv. relative to the end-cap and less than 0.01 equiv. relative 

to monomer units in the polymer backbone. The ability of this system to respond to such low 

concentrations of H2O2 is a significant advance over previous work where a boronate-capped 

PEtG homopolymer in 9:1 CD3CN:D2O required ~100 mM H2O2 for complete depolymerization 

due to the trapping of nucleophilic H2O2 by EtG.28 H2O2 is reported to be the most stable and 

highest concentration reactive oxygen species in living organisms, with concentrations varying 

significantly from 100 µM to 0.01 µM, depending on the stage of cell growth.51,52 It can be 

present even in healthy cells, but the highest concentrations are usually associated with unhealthy 

states such as inflammation or cell apoptosis. In the current system, the rate of particle 

degradation continued to increase with increasing H2O2 concentration up to ~5 mM H2O2. In the 

absence of H2O2, 80% of the initial count rate was retained over 48 h, with the small decrease 

likely resulting from non-specific cleavage as described above. As an additional control, the 

effect of 10 mM H2O2 on PEtG-nitro-PEO nanoparticles was investigated. Gradual degradation 
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was observed for this control, suggesting that this concentration of nucleophilic H2O2 can induce 

some non-specific cleavage of the carbonate on the end-cap. However, the rate of degradation 

was still much slower than that resulting from the same concentration of H2O2 applied to 

PEtG-boronate-PEO nanoparticles. Study of the same system by NMR spectroscopy in 5:1 

D2O:DMSO-d6 with and without 10 mM H2O2 confirmed that PEtG-boronate-PEO 

nanoparticles depolymerized at similar rates to those observed by DLS and that the 

depolymerization product was EtGH (Figure S30).  

Finally, the response of PEtG-multi-PEO to UV light, H2O2 and a combination of these 

stimuli was studied. As shown from Figure 5c, almost immediate degradation of the 

nanoparticles was observed after 20 min of UV irradiation. A slightly lower count rate was 

achieved using UV light and H2O2, which may result from the H2O2 being able to cleave a small 

amount of residual intact end-cap that remained after the irradiation. On the other hand, the 

degradation induced by H2O2 alone was significantly slower. As proposed in our previous work 

with PEtG homopolymers, this may arise from the requirement for multiple elimination reactions 

to initiate the depolymerization or from the trapping of reactive (azo)quinone methide species by 

depolymerizing PEtG.28 In the absence of stimuli, PEtG-multi-PEO nanoparticles were stable 

during 48 h. NMR spectroscopy confirmed the depolymerization rate and that the expected 

products were produced (Figure S31-S32).  
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Encapsulation and triggered release of drugs and model drugs 

To demonstrate the encapsulation and release abilities of the nanoparticles, the hydrophobic dye 

nile red was first used as a model drug. It has strong fluorescence emission at ~600 nm when it is 

in hydrophobic environments such as the cores of polymer nanoparticles, but its fluorescence is 

quenched in aqueous environments due to aggregation.53,54 This allows its release from 

nanoparticles to be probed. Nanoparticles were incubated with a thin film of nile red to load the 

dye into their cores then nile red release in response to stimuli was probed. As shown in Figure 

6a, PEtG-disulfide-PEO released nile red at increasing rates with increasing concentrations of 

DTT in pH 7.4 phosphate buffer at 37 °C. The rates were in general agreement with the DLS and 

NMR studies described above. 0.5 mM DTT was the critical concentration required to provide a 

rapid release. Similar results were observed for PEtG-boronate-PEO nanoparticles, with 0.5 

mM H2O2 being the critical concentration to trigger the release of a substantial fraction of the 

nile red (Figure 6b). 

 Nile red-loaded PEtG-nitrobenzyl-PEO nanoparticles were triggered to release the dye by 

irradiation with UV light for 20 min. The release of nile red at pH 7.4 was very rapid, with the 

fluorescence decreasing to less than 20% its initial value in 20 min (Figure 6c). In agreement 

with the DLS and NMR studies, it was slightly slower at pH 5.0, reaching less than 60% of the 

initial fluorescence in 20 min. The photostability of nile red under the irradiation conditions was 

confirmed to ensure that the decrease in fluorescence was a result of its release from the particles 
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and not from photodegradation (Figure S33). The rapid release of nile red from 

PEtG-nitrobenzyl-PEO nanoparticles confirms that depolymerization is very rapid following 

end-cap cleavage and that the slower rates in some of the DTT and H2O2 conditions can likely be 

attributed to end-cap cleavage being the rate-determining step.  
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Figure 6. Change in nile red fluorescence intensity as an indicator of its release from 

nanoparticles composed of a) PEtG-disulfide-PEO, b) PEtG-boronate-PEO, and c) 
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PEtG-nitrobenzyl-PEO in the presence and absence of their corresponding stimuli. Error bars 

correspond to the standard deviation on three samples.  

The above results demonstrated that PEtG-based nanoparticles were capable of 

encapsulating and releasing cargo in response to their corresponding stimuli, so the next step was 

the loading and release of drug molecules. First, the encapsulation and release of Dox using 

PEtG-nitrobenzyl-PEO nanoparticles was investigated. Dox is a chemotherapeutic used in the 

treatment of a wide range of cancers.55 It was encapsulated during self-assembly by 

co-dissolving it with the polymer in DMSO prior to nanoparticle formation. Unencapsulated 

drug was removed by dialysis. The Dox content was 13 wt% and the loading efficiency was 

~23%. The release of Dox from the nanoparticles with and without UV irradiation was 

monitored at 37 oC at pH 7.4 and 5.0 using dialysis to separate encapsulated and released drug. 

As shown in Figure 7, UV irradiation triggered a burst release 65% and 80% of the Dox at pH 

7.4 and pH 5.0 over the first 10 h. The increased release at pH 5.0, which contrasts with that 

observed for nile red, can likely be attributed to increased protonation of Dox’s primary amine 

group at pH 5. This increases its solubility in the aqueous medium outside the nanoparticle. In 

the absence of UV irradiation, the release was significantly slower at each pH.  
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Figure 7. Release of Dox from PEtG-nitrobenzyl-PEO nanoparticles with and without UV 

irradiation at a) pH 7.4 and b) pH 5.0.   

While the stimulus-triggered release was demonstrated with Dox, the relatively rapid 

background release in the absence of stimulus was not ideal, so additional drugs were 

investigated. Curcumin (Cur) is a naturally-occurring polyphenol that has been shown to inhibit 

cancer cell survival and proliferation.56 However, it suffers from poor solubility and 

bioavailability, so it would benefit significantly from an effective delivery system. As Cur is 

highly susceptible to photodegradation, PEtG-disulfide-PEO and PEtG-boronate-PEO were 
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used with this drug, and PEtG-nitrobenzyl-PEO was used as a control system that should not be 

triggered by DTT or H2O2. Cur was encapsulated by dissolving it with the copolymer in DMF, 

then adding this solution to buffer to induce self-assembly. The free drug was removed by 

dialysis and insoluble particles were removed by filtration. This resulted in drug contents of 6.6 

± 0.3 %, 8 ± 2 % and 11 ± 2 % and encapsulation efficiencies of 39 ± 2 %, 50 ± 10 % and 64 ± 

10 % for PEtG-disulfide-PEO, PEtG-boronate-PEO and PEtG-nitrobenzyl-PEO respectively. 

In initial studies, it was observed that the rapid release of Cur in the presence of the stimuli 

resulted in fast precipitation of the drug. Therefore, the analysis of released drug by a 

dialysis-based method was not used. Instead, at each time point a small aliquot of the 

nanoparticle suspension was removed, filtered, and then a specified volume was diluted into 

DMF to provide complete dissolution. The absorbance of this solution at 428 nm was measured 

to determine the percentage of encapsulated curcumin that remained.  

Both 0.5 mM and 5 mM DTT triggered the release of more than 95% of Cur from 

PEtG-disulfide-PEO nanoparticles in the first hour (Figure 8a). In contrast, in the absence of 

DTT ~90% of the Cur was retained in the nanoparticles over 8 h. The effect of DTT on Cur 

release from PEtG-nitrobenzyl-PEO nanoparticles was also investigated as a control. ~90% of 

the drug was retained over 8 h in the presence of 0.5 mM DTT. At 5 mM DTT, the retention of 

curcumin in the nanoparticles dropped to ~50% over 8 h. This likely results from a direct 

reaction of DTT with Cur as thiols are known to undergo Michael addition reactions with Cur, 
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disrupting p-conjugation and reducing its absorbance.57 However, the effect of DTT on 

PEtG-disulfide-PEO nanoparticles at either concentration was still much greater than this 

background reaction, demonstrating the specificity of the triggering.  

 

Figure 8. Curcumin retention in a) PEtG-disulfide-PEO and b) PEtG-boronate-PEO 

nanoparticles in the presence and absence of stimuli as well as their corresponding controls. 
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H2O2 triggered the release of Cur from PEtG-boronate-PEO micelles at concentrations of 

0.5 or 5 mM. The release rate of Cur was faster at higher H2O2 concentrations due to faster 

cleavage of the end-cap. At 0.5 mM, a delay in the initiation of release for several hours was 

observed, suggesting that a critical amount of depolymerization is required to trigger the release. 

In the absence of H2O2, ~80% of the Cur was retained in the PEtG-boronate-PEO nanoparticles 

over 48 h. The response of Cur-loaded PEtG-nitrobenzyl-PEO nanoparticles to H2O2 was also 

investigated as a control experiment. As for DTT, it was found that 0.5 mM H2O2 did not result 

in any significant change in the encapsulated Cur. However, 5 mM H2O2 resulted in a slow 

decrease, reaching ~60% the initial value after 48 h. This could arise from the non-specific action 

of H2O2 on the PEtG-nitrobenzyl-PEO nanoparticles, as was observed in the DLS study. It 

could also arise from the reaction of Cur with H2O2 as Cur is well known to exhibit antioxidant 

activity by scavenging reactive oxygen species.57 Nevertheless, there was again a large 

difference between the specific triggering of PEtG-boronate-PEO nanoparticles compared to 

the background reaction of PEtG-nitrobenzyl-PEO nanoparticles.  

 

Conclusions 

In conclusion, two previously developed and two new linker end-caps were used to prepare a 

series of amphiphilic PEO-PEtG-PEO copolymers responsive to thiols, UV light, H2O2, and 

combinations of these stimuli. These copolymers were self-assembled to form nanoparticles in 
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aqueous solution with hydrodynamic diameters ranging from 46 - 83 nm. Their depolymerization 

was induced by the respective stimuli and was studied by DLS and NMR spectroscopy. For DTT 

and H2O2, depolymerization occurred at a rate dependent on the stimulus concentration, and 

degradation of the nanoparticles could be detected at concentrations corresponding to less than 2 

equiv. relative to the end-cap and less than 0.01 equiv. relative to the polymerization monomer. 

This confirmed that single end-cap cleavage events could be translated to afford large changes in 

the systems through depolymerization. The encapsulation and triggered release capabilities of the 

nanoparticles were also probed using nile red, Dox, and Cur. In each case, the stimulus was 

capable of selectively releasing the payload. Furthermore, it was demonstrated that the system is 

highly tunable as the stimulus to which the system responds can be changed by changing only 

the small molecule linker end-cap between the two blocks. These properties make this new 

platform highly promising for drug delivery applications. Future work will focus on the in vitro 

and in vivo evaluation of these nanoparticles. 
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