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Abstract 

The development of copolymers is a promising approach for combining the favorable properties 

of two polymers and obtaining new properties of the combination. In this work, graft copolymers 

of polyisobutylene (PIB) and polycaprolactone (PCL) or poly(D,L-lactide) (PDLLA) were 

synthesized and studied. Amine terminated polyesters were synthesized and were grafted onto an 

activated PIB backbone synthesized from butyl rubber, a copolymer of isobutylene and 2 mol % 

isoprene. The polyester content was tuned from 15 to 44 wt % by varying the molar mass of the 

polyester blocks and the number of molar equivalents used in the grafting reaction. The graft 

copolymers with higher polyester content underwent nanoscale phase separation, as demonstrated 

by differential scanning calorimetry and atomic force microscopy imaging. This was found to 

provide enhanced mechanical properties such as increased tensile strength and Young’s modulus 

relative to the starting rubber or physical blends. Despite the significant polyester content of the 

graft copolymers and the susceptibility of the polyesters to degradation, the graft copolymers 

underwent negligible mass loss in 5 M NaOH over a period of 8 weeks. These results suggest that 

polyesters can be incorporated into PIB to tune and enhance its properties, while maintaining 

high chemical stability.    
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Introduction 

Polyisobutylene (PIB) and butyl rubber, a copolymer composed primarily of isobutylene with 

small percentages of isoprene, exhibit many favorable properties including excellent 

impermeability to water and gases, high chemical stability, high damping, and high elasticity.1,2 

These properties have enabled its use in a wide range of commercial applications including 

automobile tires, sporting equipment, adhesives, sealants, and chewing gum. In many 

applications, butyl rubber is covalently cross-linked through its isoprene units or halogenated 

derivatives in order to afford increased modulus, resilience, and creep resistance.3-5 However, this 

method of cross-linking is generally limited to applications where the potential leaching of 

chemical additives is not a major concern and where the rubber can be permanently cast in its 

desired form prior to the application. To broaden the scope of butyl rubber that is cross-linked 

through covalent bonds, additive-free cross-linking using pendant cinnamate groups was 

reported6 and thermo-reversible approaches have also been described.7,8 

 Another approach to tuning the properties of PIB and butyl rubber has involved the 

preparation of block copolymers. For example, graft copolymers having pendant poly(ethylene 

oxide),9-16 polystyrene, 7,17 and polyethylene10 chains have been synthesized and incorporation of 

the grafts has been shown to provide changes in the thermal and mechanical properties as well as 

new functions such as resistance to protein adsorption and the ability to self-assemble into 

micellar morphologies in aqueous solution. Networks and gels based on PIB with poly(N-

isopropylacrylamide)18, poly(methyl methacrylate),19 and poly(methacrylic acid)20 have also been 

prepared and studied. Many more efforts have focused on the synthesis of linear multi-block 

copolymers containing PIB segments. For example, block copolymers containing PIB as well as 

polystyrenes,21-27 poly(acrylic acid),28,29 polyamide,30 polypivalolactone,31 poly(methyl 



	 4 

methacrylate),32 poly(N-isopropylacrylamide)33 polyurethanes,34,35 and polyalloocimene36,37 have 

been synthesized and studied. Many of these PIB-based block copolymers incorporated glassy or 

semi-crystalline blocks, enabling them to behave as thermoplastic elastomers. Below their glass 

transition temperature (Tg) or melting temperature (Tm), these blocks can provide physical cross-

linking through phase separation. This allows the materials to behave as cross-linked rubbers at 

room temperature, yet they melt like plastics above the Tg or Tm and can dissolve in solvents, 

facilitating their processing by thermal or solution methods. A poly(styrene-b-isobutylene-b-

styrene) (SIBS) copolymer has been successfully used as a paclitaxel-eluting coating on the 

commercial TAXUS Express2TM coronary stent.38,39 Nevertheless, there is still significant interest 

in optimizing and tuning the properties of PIB-based materials for different applications.40 

 Aliphatic polyesters such as polylactide (PLA) and polycaprolactone (PCL) are 

increasingly used in a wide range of applications including 3D printing, food and beverage 

containers, and medical implants. They are attractive as they can be broken down in the 

environment and in vivo to non-toxic products and have been demonstrated to be biocompatible 

in a variety of applications.41,42 PCL, as well as two of PLA's stereochemical forms (poly-D-

lactide and poly-L-lactide) are semicrystalline materials, exhibiting Tgs of -60 °C, 55 °C and 60-

65 °C, and Tms of 59-64 °C, 150-170 °C and 175 °C, respectively.43-45 A third stereochemical 

form of PLA, poly-D,L-lactide (PDLLA), is amorphous and exhibits a Tg of approximately 55-60 

°C. The degradation rates of these polymers are influenced by their thermal properties as well as 

their molar masses and chain-end functional groups. While the thermal properties of PLA and 

PCL offer the possibility to obtain thermoplastic elastomer properties with PIB and butyl rubber, 

very limited research has been conducted on the preparation and study of such copolymers with 

PCL or PLA. Linear multiblock copolymers of PIB and PLLA46,47 or PCL48-51 have been 
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prepared and studied. However, to the best of our knowledge, there is only one prior report of a 

graft copolymer prepared from butyl rubber and PCL. In this case, the grafting reaction 

proceeded in low yield with only ~10 % of the derivatized isoprene units functionalized with 

PCL and a maximum PCL content of 9-12 wt %.10  

 Utilizing our efficient chemistry for the preparation of graft copolymers from butyl 

rubber,13,14 we report here the synthesis and study of graft copolymers with PCL and PDLLA. 

While PCL is semi-crystalline, the PDLLA stereochemical form of PLA is selected in order to 

study the influence of a glassy block. Different polyester content is achieved in the graft 

copolymers by starting with different molar masses of polyesters and also by tuning the ratio of 

polyester to activated functional groups on the RB backbone. The thermal properties, phase 

separation behavior, mechanical, and degradation properties of the polymers are studied in order 

to elucidate structure-property relationships for these materials.   

 

Experimental section 

General procedures and materials 

Butyl rubber 402 containing 2 mol % isoprene units (Mw = 395 kg mol-1; dispersity (Đ) = 2.44, as 

measured by size exclusion chromatography (SEC) in tetrahydrofuran (THF) relative to 

polystyrene standards) was provided by LANXESS (Sarnia, Canada) and was converted to the 4-

nitrophenyl carbonate derivative (PIB-PNP) by the previously reported method.13 Hydroxyl-

terminated PCL with an Mn of 900 g mol-1 (PCL-OH-900) and 3500 g mol-1 (PCL-OH-3500) 

and hydroxyl-terminated PDLLA with an Mn of 2800 g mol-1 (PDLLA-OH-2800) were 

purchased from Polymer Source (Montreal, Canada). Their Mns and Đ measured by SEC in THF 

relative to polystyrene standards were Mn = 1870 g mol-1 and Đ = 1.3, Mn = 7620 g mol-1 and Đ = 
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1.2, and Mn = 3850 g mol-1 and Đ = 1.2 for PCL-OH-900, PCL-OH-3500, and PDLLA-OH-

2800 respectively. Silicon wafers were purchased from University Wafer (Boston, 

Massachusetts). Solvents were purchased from Caledon (Georgetown, ON, Canada) and 4-

nitrophenyl chloroformate was purchased from Alfa Aesar (Ward Hill, MA, USA). Dry CH2Cl2 

and toluene were obtained from an Innovative Technology (Newburyport, USA) solvent 

purification system based on aluminum oxide columns. All other chemicals were purchased from 

Sigma Aldrich (St. Louis, MO, USA) and used without further purification unless stated 

otherwise. Nuclear magnetic resonance (NMR) spectra were obtained in CDCl3 using a 400 MHz 

or 600 MHz Varian Inova spectrometer. NMR chemical shifts are reported in ppm and are 

calibrated against residual solvent signals of CDCl3 (δ 7.26). Coupling constants (J) are reported 

in Hz. Differential scanning calorimetry (DSC) was performed under a nitrogen atmosphere on a 

Q20 DSC from TA Instruments (Newcastle, DE, USA) at a heating/cooling rate of 10 °C/min 

from -100 to + 100 °C. The Tg and Tm were obtained from the second heating cycle. SEC was 

performed in THF using a Viscotek GPCmax VE 2001 GPC Solvent/Sample Module equipped 

with a Waters 2489 UV/Visible Detector, Viscotek VE 3580 RI Detector and two PolyPore (300 

mm x 7.5 mm) columns from Agilent. The calibration was performed using polystyrene 

standards. Fourier transform infrared spectroscopy (FTIR) was performed on a Bruker Optics 

TENSOR 27 series FTIR, OPUS 7.0, recording from 500 – 3700 cm-1. 

 

Synthesis of PCL-NHBOC-900 

PCL-OH-900 (0.40 g, 0.44 mmol, 1.0 equiv.), 4-(dimethylamino)pyridine (DMAP) (0.20 g, 1.6 

mmol, 3.7 equiv.), pyridine (0.10 g, 1.3 mmol, 2.9 equiv.) were dissolved in dry CH2Cl2 (7 mL). 

BOC-protected β-alanine anhydride52 (0.39 g, 1.1 mmol, 2.5 equiv.) was dissolved separately in 
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dry CH2Cl2 (2 mL) then was added to the PCL solution and stirred overnight at room 

temperature. Next, deionized water was added to the reaction mixture and it was stirred for an 

additional 3 hours at room temperature. The product was isolated by washing the organic phase 

with 1 M HCl (3 times), 1 M Na2CO3 (3 times) and then concentrated brine (1 time). The CH2Cl2 

was then dried with MgSO4, filtered, and the solvent was removed in vacuo. Yield: 0.35 g, 83 %. 

1H NMR  (400 MHz, CDCl3): δ 4.24 (t, 2H, J = 4.7 Hz), 4.05 (t, 18H, J = 6.0 MHz), 3.70 (t, 2H, J 

= 5.1 Hz), 3.63-3.66 (m, 2H), 3.54-3.56 (m, 2H), 3.39 (s, 3H), 2.51 (t, 2H, J = 6.1 Hz), 2.29-2.37 

(m, 16H), 1.60-1.69 (m, 32H), 1.43 (s, 9H), 1.34-1.42 (m, 16H). SEC: Mw = 3160 g mol-1, Đ = 

1.33. FTIR: 1047, 1105, 1171, 1246, 1366, 1420, 1472, 1569, 1728, 2947, 2866, 3393, 3439 cm-

1. 

Synthesis of PCL-NH2-900 

PCL-NHBOC-900 (0.34 g, 0.37 mmol, 1.0 equiv.) was dissolved in 2.5 mL of 1:1 trifluoroacetic 

acid (TFA):CH2Cl2 (1:1) and the reaction mixture was stirred for 2 hours. The solvents were 

removed under a stream of air in the fumehood. The product was redissolved in CH2Cl2 and dried 

in vacuo to remove residual TFA, providing the product as its TFA salt. Yield: 0.34 g, > 99 %. 1H 

NMR (400 MHz, CDCl3): δ 4.24 (t, 2H, J = 4.7 Hz), 4.16 (t, 2H, J = 6.4 Hz), 4.06 (t, 16H, J = 6.6 

Hz), 3.85 (br s, 3H), 3.70 (t, 2H, J = 4.7 Hz), 3.64-3.66 (m, 2H), 3.55-3.58 (m, 2H), 3.39 (s, 3H), 

3.33 (br s, 2H), 2.80 (t, 2H, J = 5.9 Hz), 2.29-2.34 (m, 16H), 1.60-1.69 (m, 32H), 1.34-1.42 (m, 

16H). SEC: Mn = 1690 g mol-1, Đ = 1.45. FTIR: 1047, 1105, 1171, 1246, 1366, 1420, 1472, 

1569, 1728, 2947, 2866, 3445 cm-1. 

Synthesis of PCL-NHBOC-3500 

The same procedure described above for the synthesis of PCL-NHBOC-900 was followed 

except that PCL-OH-3500 (0.40 g, 0.11 mmol, 1.0 equiv.) was used. Yield: 0.38 g, 88 %. 1H 
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NMR (400 MHz, CDCl3): δ 4.13 (td, 2H, J = 7.8, 4.7 Hz), 4.06 (t, 52H, J = 6.8 Hz), 3.37-3.41 (m, 

2H), 2.51 (t, 2H, J = 6.1 Hz), 2.30 (t, 54H, J = 7.4 Hz), 1.62-1.68 (m, 108H), 1.34-1.43 (m, 62H), 

1.25 (t, 3H, J = 7 Hz). SEC: Mn = 7540 g mol-1, Đ = 1.22. FTIR: 1047, 1105, 1171, 1246, 1366, 

1420, 1472, 1569, 1728, 2947, 2866, 3393, 3439 cm-1. 

Synthesis of PCL-NH2-3500 

The same procedure described above for the synthesis of PCL-NH2-900 was followed except that 

PCL-NHBOC-3500 (0.40 g, 0.11 mmol, 1.0 equiv.) was used. Yield: 0.40 g, > 99 %. 1H NMR 

(400 MHz, CDCl3): δ 4.17 (t, 2H, J = 6.5 Hz), 4.10-4.15 (m, 2H), 4.06 (t, 76H, J = 6.5 Hz), 3.33 

(t, 2H, J = 5.9 Hz), 2.83 (t, 2H, J = 5.3 Hz), 2.31 (t, 80H, J = 7.6 Hz), 1.62-1.68 (m, 162H), 1.36-

1.41 (m, 80H), 1.25 (t, 3H, J = 7.6 Hz). SEC: Mn = 7400 g mol-1, Đ = 1.22. FTIR: 1047, 1105, 

1171, 1246, 1366, 1420, 1472, 1569, 1728, 2947, 2866, 3445 cm-1. 

Synthesis of PDLLA-NHBOC-2800 

The same procedure described above for the synthesis of PCL-NHBOC-900 was followed 

except that PDLLA-OH-2800 (0.40 g, 0.14 mmol, 1.0 equiv.) was used. Yield: 0.31 g, 81 %. 1H 

NMR (400 MHz, CDCl3): δ 5.12-5.25 (m, 39H), 4.23-4.32 (m, 2H), 3.56-3.60 (m, 2H), 3.44 (br 

s, 2H), 3.36 (s, 3H), 2.56-2.61 (m, 2H), 1.54-1.59 (m, 117H), 1.43 (s, 9H). SEC: Mn = 4280 g 

mol-1, Đ = 1.19. FTIR: 1134, 1267, 1512, 1757, 2949, 2997, 3517, 3435 cm-1. 

Synthesis of PDLLA-NH2-2800 

PDLLA-NHBOC-2800 was dissolved in 2 mL of dry CH2Cl2. TFA was added (0.70 g, 6.1 

mmol, 100 equiv.) and the reaction mixture was stirred at 0 °C for 2 hours. Next, the solvents 

were removed under reduced pressure (~20 mbar). The product was re-dissolved in CH2Cl2 and 

then passed over a K2CO3 plug to remove residual TFA, affording the product as the free amine. 

Yield: 0.65 g, 91 %. 1H NMR: δ, 5.13-5.23 (m, 39H), 4.23-4.32 (m, 2H), 3.56-3.58 (m, 2H), 3.36 
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(s, 3H), 3.29 (br s, 2H), 2.83 (br s, 2H), 1.54-1.58 (m, 117H). SEC: Mn = 3620 g mol-1, Đ = 1.31. 

IR: 1134, 1267, 1512, 1757, 2949, 2997, 3508 cm-1. 

Synthesis of PIB-PCL-900 

PCL-NH2-900 (0.95 g, 1.1 mmol, 1.2 equiv.) was dissolved in 20 mL of dry toluene at 60 °C. A 

solution of PIB-PNP13 (2.2 g, 0.88 mmol of 4-nitrophenylcarbonate units, 1.0 equiv.) in 25 mL 

of dry toluene was added dropwise to the reaction mixture. DMAP (0.43 g, 3.52 mmol, 4.0 

equiv.) dissolved in 4 mL dry toluene was also added to the reaction mixture, which was then 

stirred overnight at 60 °C. The solvent was then removed in vacuo and the graft copolymer was 

redissolved in CH2Cl2, washed with deionized water (3 times), dried with MgSO4, filtered, 

concentrated and precipitated from CH2Cl2 into acetone to afford the product. Yield: 2.45 g, 85 

%. 1H NMR (600 MHz, CDCl3): δ 5.20 (br s, 0.32H), 5.10 (s, 0.52H), 5.05 (s, 0.37H), 4.87 (s, 

0.44H), 4.24 (t, 1H, J = 5.3 Hz), 4.06 (t, 7.94H, J = 6.5 Hz), 3.70 (t, 0.99H, J = 4.7 Hz), 3.60-3.65 

(m, 0.96H), 3.54-3.56 (m, 0.88H), 3.45 (q, 1.13H, J = 5.9 Hz), 3.38 (s, 1.19H), 2.53 (t, 1.07H, J = 

6.2 Hz), 2.3 (t, 9.31H, J = 7.6 Hz), 1.62-1.68 (m, 38H), 1.41 (s, 107H), 1.11 (s, 294H). PCL 

content from 1H NMR = 15 wt %. IR: 1165, 1230, 1366, 1390, 1470, 1736, 2955, 3445 cm-1. 

DSC: Tg = -67 °C.  

Synthesis of PIB-PCL-3500a 

An analogous procedure to that described above for the synthesis of PCL-NHBOC-900 was 

followed except that the following reagents were used: PCL-NH2-3500 (0.71 g, 0.20 mmol, 0.8 

equiv.); PIB-PNP (0.63 g, 0.25 mmol of 4-nitrophenylcarbonate units, 1.0 equiv.); DMAP (0.12 

g, 1.0 mmol, 4.0 equiv.). Yield: 1.2 g, 89 %. 1H NMR (600 MHz, CDCl3): δ 5.27 (s, 0.24H), 5.20 

(br. s, 0.16H), 5.12 (s, 0.28H), 5.10 (s, 0.14H), 5.05 (s, 0.18H), 4.87 (s, 0.25H), 4.13 (q, 0.5H, J = 

7.2 Hz), 4.07 (t, 16.5H, J = 6.5 Hz), 3.45 (q, 0.28H J = 5.9 Hz), 2.53 (t, 0.43H, J = 5.9 Hz), 2.31 
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(t, 16.6H, J = 7.3 Hz), 1.62-1.68 (m, 33.8H), 1.41 (s, 115H), 1.11 (s, 294H). PCL content from 1H 

NMR = 26 wt %. IR: 1165, 1230, 1366, 1390, 1470, 1736, 2955, 3445 cm-1. DSC: Tg = -65°C, 

Tm = 44°C.  

Synthesis of PIB-PCL-3500b 

An analogous procedure to that described above for the synthesis of PCL-NHBOC-900 was 

followed except that the following reagents were used: PCL-NH2-3500 (0.34 g, 0.097 mmol, 1.2 

equiv.); PIB-PNP (0.20 g, 0.082 mmol of 4-nitrophenylcarbonate units, 1.0 equiv.); DMAP (40 

mg, 0.32 mmol, 4.0 equiv.). Yield: 0.24 g, 51 %. 1H NMR: δ 5.19 (br. s, 0.22H), 5.1 (s, 0.44H), 

5.05 (br. s, 0.33H), 4.87 (br. s, 0.46H), 4.13 (q, 1.1H, J = 7.2 Hz), 4.07 (t, 36.5H, J = 6.5 Hz), 

3.46 (q, 0.94H, J = 5.9 Hz), 2.53 (t, 0.97H, J = 5.9 Hz), 2.31 (t, 37.4H, J = 7.3 Hz), 1.62-1.68 (m, 

118H), 1.41 (s, 134H), 1.11 (s, 294H). PCL content from 1H NMR = 44 wt %. IR: 1165, 1230, 

1366, 1390, 1470, 1736, 2955, 3445 cm-1. DSC: Tg = -62 °C, Tm = 50 °C.  

Synthesis of PIB-PDLLA-2800 

An analogous procedure to that described above for the synthesis of PCL-NHBOC-900 was 

followed except that the following reagents were used: PDLLA-NH2-3500 (0.65 g, 0.23 mmol, 

1.2 equiv.); PIB-PNP (0.48 g, 0.19 mmol of 4-nitrophenylcarbonate units, 1.0 equiv.); DMAP 

(90 mg, 0.77 mmol, 4.0 equiv.). Yield: 0.51 g, 50 %. 1H NMR: δ 5.14-5.25 (m, 14.8H), 5.11 (br. 

s, 0.48H), 5.04 (br. s, 0.31H), 4.86 (s, 0.36H), 4.23-4.32 (m, 1.09H), 3.57-3.59 (m, 0.97H), 3.45-

3.50 (m, 1.31H), 3.36 (s, 1.27H), 2.61 (t, 1.11H, J = 2Hz), 1.54-1.59 (m, 65.9H), 1.41 (s, 96H), 

1.11 (s, 293H). PDLLA content from 1H NMR = 46 wt%. IR:  1094, 1132, 1188, 1365, 1388, 

1468, 1757, 2896, 2952 cm-1. DSC: Tg1 = -63 °C; Tg2 = 23 °C.  
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Atomic force microscopy (AFM) 

Silicon wafers were cut into small pieces (~1 cm2) and treated with “Piranha” solution, a mixture 

of 3:1 H2SO2:H2O2 for approximately 1 hour to generate a clean, hydrophilic surface. The surface 

was then cleaned with deionized water, acetone and subsequently dried overnight in a desiccator. 

Polymer thin films were prepared by spin-coating 100 μL of a 3 wt % solution of the material in 

toluene on 1 cm2 of silicon wafer at 6000 rpm for 30 seconds. The surfaces were kept under 

vacuum for at least 24 hours prior to image analysis. Annealing was performed by heating the 

samples at 100 °C for 7 hours in a vacuum oven. Surfaces were visualized by an AFM (XE-100 

microscope from PSIA). Images were obtained by scanning surfaces in tapping mode with 

rectangular-shaped silicon cantilevers with a spring constant of 48 N/m. Images were then refined 

using XEI Image Processing software for SPM data by applying surface smoothing and glitch 

removal.  

Water contact angle analysis 

Polymer coatings on silicon wafers were prepared as described above for the AFM imaging. The 

water contact angle of the polymer film surface in air was measured by using a sessile drop 

method on a KRÜSS DSA100 Drop Shape Analysis System (Hamburg, Germany). Timing 

started after dosing a water droplet onto the testing surface, allowing for an incubation period of 

30 seconds for consistency. After 30 seconds, angles were recorded via tangent analysis. 

Tensile testing  

A 40 mm x 5 mm x 0.3 mm (length x width x thickness) strip of polymer was cut from a polymer 

film (prepared via compression-molding with Carver Model 385-OC heated manual press) and its 

tensile properties were measured on an Instron 3365 universal testing instrument, at 25 mm/min 
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and 25 °C, in accordance with ASTM D882 – 12. For each copolymer, at least 6 samples were 

tested in separate analyses, and the data reported is the calculated mean ± standard deviation. 

 

Degradation study 

Sample preparation: Graft copolymers and control materials were compression-moulded using a 

Carver Model 385-OC (Carver Inc., Wabash) heated manual press into films approximately 0.35 

mm in thickness. Disks having a diameter of 5 mm were punched out of the films. Each disk 

weighed approximately 5 mg and the exact mass was accurately recorded. 

Degradation: Pre-weighed disks (3 per time point) were each immersed in 1 mL of 5 M NaOH 

and the vials were sealed and then incubated in an oven at 37 °C. At each point, 3 disks were 

removed, rinsed with deionized water and dried in a vacuum oven at 37 °C for 24 h. Dried disks 

were weighed to determine % mass loss according to equation 1, 

  

%	𝑀𝑎𝑠𝑠	𝐿𝑜𝑠𝑠 = )
𝑚+ − 𝑚-	
𝑚+

. × 100% 

 

(1) 

where 𝑚+ is the initial disk mass and 𝑚- is mass of the disk at time t. The data reported is the 

calculated mean ± standard deviation for the triplicate samples. 

Scanning electron microscopy 

SEM micrographs were obtained using a Hitachi 3400-N Variable Pressure Scanning Electron 

Microscope. Images were taken at 100X and 1000X magnification utilizing variable pressure 

mode to avoid sample preparation via gold sputtering techniques (possible damage to rubber 

films).  

 

Results and discussion 
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Synthesis and chemical characterization of graft copolymers 

A “grafting-to” synthetic approach was used for the preparation of the PIB-polyester block 

copolymers. First, amine-terminated PCL and PDLLA were prepared. As shown in Scheme 1, 

hydroxyl-terminated PCL with a number average molar mass (Mn) of either 900 g mol-1 (PCL-

OH-900) or 3500 g mol-1 (PCL-OH-3500) was reacted with an anhydride derivative of tert-

butyloxycarbonyl (t-BOC)-protected β-alanine52 in the presence of pyridine and 4-

dimethylaminopyridine (DMAP) as a catalyst to provide the protected polymers PCL-NHBOC-

900 and PCL-NHBOC-3500. The BOC protecting group was then removed using trifluoracetic 

acid (TFA) to afford the target amine-functionalized polymers PCL-NH2-900 and PCL-NH2-

3500 in the form of their TFA salts. The same approach was used to prepare amine-terminated 

PDLLA from a starting hydroxyl-terminated PDLLA with an Mn of 2800 g mol-1 (PDLLA-OH-

2800) (Scheme 2). However, the target polymer PDLLA-NH2-2800 was more prone to cleavage 

of the terminal β-alanine moiety from the polymer under acidic conditions, so it was necessary to 

perform the TFA deprotection under anhydrous conditions at 0 oC and to pass the resulting 

polymer over a K2CO3 plug in order to afford the free base form of the polymer rather than the 

TFA salt. The chemical structures of the resulting polymers were confirmed by 1H nuclear 

magnetic resonance (NMR) spectroscopy and infrared (IR) spectroscopy (Figures S1-S4). SEC 

confirmed that no significant changes in the molar masses of the polymers occurred during the 

functionalization or deprotection steps (Figure S5-S6). 	
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Scheme 1. Synthesis of amine-terminated PCL. 

	
	

 

Scheme 2. Synthesis of amine-terminated PDLLA. 
 

 

In preparation for the conjugation of the amine-terminated polyesters, 4-nitrophenyl 

carbonate-activated polyisobutylene (PIB-PNP, Scheme 3) was prepared as previously reported 

via epoxidation of butyl rubber having 2 mol % of isoprene moieties, epoxide ring opening using 

HCl as a catalyst to afford an allylic alcohol, and then reaction of the resulting alcohols with 4-

nitrophenyl chloroformate.13 The amine-terminated polyesters were then reacted with PIB-PNP 

in toluene in the presence of DMAP at 60 oC overnight. The resulting graft copolymers were 
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purified by washing an organic solution of the copolymer with water, followed by precipitation 

into acetone to remove byproducts, excess reagents, and ungrafted polyester chains. As shown in 

Table 1, the polyester content of the copolymers was tuned according to the molar mass of the 

polyester as well as the number of equivalents used in the grafting reaction. 

  

 

Scheme 3. Synthesis of PIB-polyester graft copolymers. 

 

 The graft copolymers were characterized chemically by 1H NMR spectroscopy, IR 

spectroscopy, and SEC. As shown in Figure 1, consistent with our previous results involving the 

grafting of PEO,14 conversion of the activated carbonates to carbamates upon successful grafting 

was characterized by 1H NMR spectroscopy based on the upfield shifts of the peaks 

corresponding to the alkene protons (labeled a,a’, b, and b’ in Figure 1) as well as the allylic 

proton (labeled c and c’ in Figure 1). Whereas full conversion was obtained using 1.2 equivalents 

of polyester-NH2, the use of 0.8 equivalents led to ~50 % conversion (Table 1). The weight 

content of polyester was quantified based on the relative integrations of the peaks at 1.11 ppm 

corresponding to the CH3 groups on PIB and either the triplet at either 4.1 ppm corresponding to 

the CH2 adjacent to oxygen of the ester in PCL or the multiplet at 5.2 ppm corresponding to the a 

CH group on PDLLA (Figures S7-S10). As shown in Table 1, the polyester content ranged from 

15 – 44 wt % for PCL and was 28 wt % for the PDLLA graft copolymer. IR spectra of all of the 

graft copolymers had strong peaks at 2950 cm-1 corresponding to aliphatic C-H stretching on both 
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PIB and the polyester and at 1750 cm-1 corresponding to C=O stretching on the polyester 

(Figures S11-S12). The molar masses of the graft copolymers could not be determined by SEC 

due to anomalous behavior of these PIB graft copolymers in SEC, which has been reported by 

our group and others.9,14 However SEC did confirm the absence of ungrafted polyester in the 

copolymers (Figures S13-S14).  

 

 

Figure 1. 1H NMR spectra (CDCl3, 600MHz) including a zoom on the region from 4.7 to 5.3 

ppm of a) PIB-PNP; b) PIB-PCL-3500a; c) PIB-PCL-3500b. The spectra show partial 

conversion for PIB-PCL-3500a due to substoichiometric use of PCL-NH2-3500 relative to 4-

nitrophenyl carbonate groups versus full conversion for PIB-PCL-3500b due to the use of 1.2 

equiv. of PCL-NH2-3500. 
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Physical characterization of the graft copolymers 

The thermal properties of the polymers were measured by DSC. The starting butyl rubber has a 

Tg between -63 and -70 °C.53,54 PCL-OH-900 has no distinct Tg due to its low molar mass, but a 

melting temperature (Tm) of 44 °C. Upon its incorporation into the graft copolymer PIB-PCL-

900, containing 15 wt % PCL, a Tg of -67 °C was observed, likely corresponding to that of the 

PIB backbone. However, no Tm was observed, suggesting that the PCL did not phase separate 

into crystalline domains. PCL-OH-3500 has a Tg of -64 °C and a Tm of 63 °C. Upon its 

incorporation into PIB-PCL-3500a, containing 32 wt % PCL, a Tg of -65 °C and a Tm of 44 °C 

were observed. The Tg is consistent with those of both the PIB and PCL, which are very similar, 

whereas the Tm is lower than that of the pure PCL homopolymer. This suggests that phase 

separation of PCL occurred at the nanoscale but that the crystalline domains were likely smaller 

than those of the bulk polymer, resulting in a lower Tm. PIB-PCL-3500b having a higher PCL 

content of 44 wt % had a similar Tg of -62 °C, but a higher Tm of 50 °C, suggesting it could phase 

separate and crystalline over larger domains. Overall, these results are in agreement with previous 

reports of linear block copolymers of PIB and PCL, where the incorporation of longer PCL 

blocks and higher PCL content resulted in Tm values similar to those of the bulk PCL.10,49,55 The 

observation of Tm values lower than those of the bulk semi-crystalline polymer for shorter 

polymer grafts and lower graft content is consistent with our previous observations for PIB-PEO 

graft copolymers.14 In the case of PDLLA, bulk PDLLA-OH-2800 is amorphous with a Tg of 29 

°C. Upon its incorporation into PIB-PDLLA-2800, Tgs of -63 °C and 23 °C were observed. The 

observation of two Tgs is consistent with phase separation of the copolymer blocks as was 

previously observed for linear PIB-PLLA multiblock copolymers.46  
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 The phase separation in the graft copolymers was further probed through AFM imaging. 

Thin films of the copolymers were prepared by spin-coating a 3 wt % solution of copolymer in 

toluene onto silicon wafers. After complete drying, the samples were annealed by heating at 100 

°C for 7 hours. Consistent with the thermal analysis, no phase separation was observed for PIB-

PCL-900 (Figure 2a). On the other hand, phase separation was observed for the other three graft 

copolymers (Figure 2b-d). In particular, PIB-PCL-3500b formed a well-ordered lamellar 

morphology, which is consistent with the close to 50:50 ratio of PIB:PCL. PIB-PCL-3500a and 

PIB-PCL-PDLLA appeared to form less ordered spherical and cylindrical morphologies. The 

corresponding topographical images are shown in Figure S16. For comparison, physical blends of 

PCL and PDLLA with butyl rubber in similar mass ratios to those of the block copolymers were 

also prepared and imaged by AFM. In each case, micrometer-scale phase separation was 

observed due to the incompatibility of the two polymers (Figures S17-S18). In the graft 

copolymers, covalent attachment constrains phase separation to the nanoscale dimensions of the 

polymers, which has the potential to improve the properties of the materials as described below. 
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Figure 2. AFM phase images of a) PIB-PCL-900; b) PIB-PCL-3500a; c) PIB-PCL-3500b; d) 

PIB-PDLLA-2800 following spin coating from toluene and annealing at 100 °C for 7 hours.  

 

The wettability of a polymer surface is also important for many applications, so the water 

contact angles (WCAs) of the graft copolymer films prepared by spin-coating were measured 

using the sessile drop method. As shown in Table 2, the WCA of PCL-OH-900 (51 ± 2 °) was 

lower than that of PCL-OH-3500 (71 ± 1 °), likely due to the increased contribution from the 

hydrophilic terminal hydroxyl as well as the initiator. PDLLA-OH-2800 had a WCA of 66 ± 2 °. 

Upon grafting either PCL or PDLLA to the activated polyisobutylene, the contact angles of the 

copolymers ranged from 91 – 94 °, very similar to that of the starting butyl rubber, which has a 

reported contact angle of 91 °.56 This increase in contact angle relative to the polyesters can be 
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attributed to the conversion of hydrophilic terminal groups on the polyester to carbamates in the 

graft copolymer, the relatively high PIB content of the graft copolymers, and the tendency of 

polymers to rearrange in order to present hydrophobic surfaces, thereby minimizing their surface 

energy.57 

 

Tensile testing 

Uncross-linked butyl rubber exhibits a low ultimate tensile strength (s) of ~0.09 MPa, a low 

Young’s Modulus (E) of 0.2-0.5 MPa, but a high elongation (eb) at break of ~800 %.58 On the 

other hand, PCL has a s of ~4 MPa, E of ~80 MPa, and eb of ~60 % and PDLLA has s of ~40 

MPa, E of ~30 MPa, and an eb of 6-74 %.59-62 It was proposed that the incorporation of 

semicrystalline or glassy PCL and PDLLA blocks respectively would increase both the modulus 

and strength of the rubber. Therefore, the mechanical properties of the new graft copolymers 

were measured by tensile testing. Representative stress-strain curves are shown in Figure 3, while 

the mechanical properties are summarized in Table 3. The incorporation of 15 wt % of PCL in 

PIB-PCL-900 did not result in an increase in E, but it did result in an ~2-fold increase in the 

Young’s modulus at 50 % stain (E50), a 6-fold increase in s and a 1.6-fold increase in eb, 

suggesting that even small percentages of low molar mass PCL can toughen butyl rubber. The 

incorporation of 26 wt % PCL in PIB-PCL-3500a resulted in small increases in E and E50 to 0.74 

MPa and 1.10 MPa respectively relative to ~0.6 MPa for the starting rubber. The s of PIB-PCL-

3500a was similar to that of PIB-PCL-900 but eb was much lower than that of either the starting 

rubber or PIB-PCL-900. These differences can likely be attributed to the presence of crystalline 

PCL domains in PIB-PCL-3500a but not in PIB-PCL-900. Upon increasing the PCL content in 

PIB-PCL-3500b, a further substantial increase in E to 22 MPa was observed, which was 
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accompanied by an increase in s to 3.9 MPa, which is 16-fold higher than butyl rubber and a 

decrease in eb to 170 %, which is ~4-fold less than butyl rubber. The incorporation of 28 wt % of 

PDLLA in PIB-PDLLA-2800 resulted in a E of 2.9 MPa, which is a 5-fold increase relative to 

butyl rubber, a s of 4 MPa, which is a 16-fold increase relative to butyl rubber, and a decrease in 

eb to 250 %. As supported by the thermal analyses described above, these changes in mechanical 

properties likely result from glassy domains of PDLLA within the rubber matrix.  

   

 

Figure 3. Representative strain-strain curves for the graft copolymers in comparison with butyl 

rubber. 

Overall, with the exception of the high eb observed for PIB-PCL-900, all of the graft 

copolymers exhibited properties intermediate between the two homopolymers and the properties 

could be readily tuned by varying the content of the glassy or semi-crystalline block. This 

behavior is similar to that previously observed for linear PIB-PLLA multiblock copolymers46 and 

suggests that PCL and PDLLA can impart cross-linking via micro-phase separation in butyl 
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rubber. However, in comparison with the PIB-PLLA linear block copolymers, s and E were 

somewhat lower for the current materials. This might be attributed to the differences in thermal 

and mechanical properties of PCL and PDLLA with those of PLLA as well as the different 

architectures of the current polymers. In comparison with the well-studied thermoplastic 

elastomer SIBS, composed of 24 wt % PS, as well as a recently reported cross-linked version of 

SIBS, the E values for the current materials were comparable, but s was somewhat lower, which 

again can be attributed to the properties of polystyrene and the polymer architectures.63,64 The 

observed trends and the magnitudes of E, s, and eb were also similar to those of graft copolymers 

of butyl rubber with polystyrene and PEO grafts which are also glassy and semi-crystalline 

respectively.7,16 

To confirm that the covalent copolymer structure was important in imparting the observed 

mechanical properties, physical blends of butyl rubber with PCL and PDLLA were also 

investigated. Representative stress-strain curves are provided in Figure S19. As shown in Table 3, 

E was relatively high for these blends, ranging from ~2-5 MPa for the PCL blends and ~15 MPa 

for the PDLLA blend. However, the sample variability was high, which can likely be attributed to 

poor sample homogeneity, as suggested by the AFM imaging described above. On the other 

hand, s was much lower for the blends than the graft copolymers in all cases, suggesting that the 

nanoscale rather than micrometer scale phase separation observed for the graft copolymers is 

important for their strength. As the tensile testing was performed on each blend, the samples 

appeared to fracture at the polyester domains or the rubber-polyester interface, and residual butyl 

rubber was pulled in the axial direction. The eb values for the blends were all lower than those of 

butyl rubber and scaled inversely with the polyester content. From these results, it can be 



	 23 

concluded that the graft copolymers were superior in terms of their strength and homogeneity, 

which are important properties for many applications.   

 

Degradation study 

Both PCL and PDLLA are degradable polymers. Under physiological conditions (neutral pH, 37 

°C), depending on the polymer’s molar mass and the specimen’s dimensions, PCL has been 

found to degrade over a period of years,44 and PDLLA degrades over several months.41,65 On the 

other hand, butyl rubber exhibits high chemical stability, and typically exhibits little to no 

degradation over several years.1,2 To determine the scope of potential applications for the new 

graft copolymers, it was of interest to determine how the combination of these polymers with 

very different degradation properties would influence their degradation behavior. Films of the 

graft copolymers and homopolymer controls with 0.35 mm thickness were prepared by melt 

pressing, and disks 5 mm in diameter were punched and immersed in aqueous solution. As the 

degradation was expected to proceed very slowly, accelerated degradation conditions were used, 

involving the subjection of the samples to 5M NaOH and 37 °C for an 8-week period.66,67  

As shown in Figure 4, while the degradation of PCL and PDLLA to soluble species was 

complete within 1-3 days, butyl rubber exhibited < 1 % mass loss over 8 weeks. When polyesters 

and butyl rubber were combined in the graft copolymers, < 1 % mass loss was also observed. 

While it is possible that erosion of polyester on the surface of the disk occurred, this suggests that 

in the bulk the butyl rubber can protect the polyester from degradation, even under these harsh 

hydrolytic conditions. This can likely be attributed to the high impermeability of butyl rubber to 

water and hydroxide species.  Observations of the disks at the macroscopic scale showed 

extensive wrinkling and contraction for butyl rubber as well as PIB-PCL-900 and PIB-PCL-
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3500a, presumably due to creep deformation in the aqueous environment (Figure S20). On the 

other hand, PIB-PCL-3500b and PIB-PDLLA-2800, containing higher percentages of the semi-

crystalline and glassy polyesters respectively retained their shape, suggesting that the polyester 

domains provide physical cross-linking that reduces creep, allowing the polymers to retain their 

shape. The surfaces of the disks were also imaged by scanning electron microscopy prior to 

immersion in aqueous NaOH and after 8 weeks (Figure 5). PIB-PCL-900 and PIB-PCL-3500a 

exhibited increased surface roughness after 8 weeks, which was consistent with the observed 

wrinkling behavior. PIB-PCL-3500b and PIB-PDLLA-2800 increased in roughness to a much 

smaller extent, which suggests erosion of surface polyester domains or a small degree of surface 

wrinkling. However, consistent with the lack of mass loss, no cracking and no significant erosion 

were observed by SEM.  

 

Figure 4. Mass loss from graft copolymer and the corresponding homopolymer disks following 

incubation in 5M NaOH at 37 °C for 8 weeks.  
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Figure 5. SEM images of disk surfaces before (left column) and after 8 weeks immersion in 5 M 

NaOH at 37 °C for 8 weeks. a-b) PIB-PCL-900; c-d) PIB-PCL-3500a; e-f) PIB-PCL-3500b; g-

h) PIB-PDLLA-2800. Scale bar = 500 µm. 

	
The hydrolytic degradation of linear PIB-PLLA multiblock copolymers has also been 

previously investigated.47 More rapid degradation was observed for copolymers with shorter 

PLLA blocks due to their lower crystallinity. However, their samples exhibited 10 – 100 % mass 

loss over 20 - 30 weeks, even in pH 7.4 buffer at 37 °C, suggesting more rapid erosion. While the 

molar mass of the polyester grafts and overall polyester content of the materials in our current 

work is comparable to those of the previously studied multiblock copolymers, a key difference is 

the graft copolymer architecture of the current materials and the much longer PIB backbone 
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length of 200 – 400 kg mol-1 in comparison with 3400 g mol-1 in the previous system. The higher 

molar mass of the PIB backbone, its organization in the solid state, and its impermeability to 

water must allow it to organize in a manner that effectively shields the internal polyester domains 

from erosion. In contrast, the shorter PIB domains in the linear multiblock domains appear to be 

incapable of protecting the PLLA from erosion. This demonstrates the importance of PIB molar 

mass and overall polymer architecture in the properties of these materials. While enhanced 

erosion of these graft copolymer materials relative to butyl rubber would ultimately be expected 

over the long term, the current study suggests that polyesters can be used to enhance the modulus 

and strength of butyl rubber for applications while at the same time preserving good stability and 

chemical resistance.  

 

Conclusions 

Amine-terminated PCL and PDLLA were synthesized and then a “grafting-to” synthetic 

approach starting from butyl rubber was used to prepare PIB-polyester graft copolymers. The 

polyester content was varied by tuning both the molar mass of the polyester and the number of 

equivalents used in the grafting reaction. Thermal analysis and AFM imaging suggested that 

phase separation occurred for the PIB-PDLLA copolymer prepared from 2800 g mol-1 PDLLA 

and for the PIB-PCL copolymer prepared from 3500 g mol-1 PCL but not from 900 g mol-1 PCL. 

Tensile testing showed a trend towards increased Young’s modulus, increased s, and decreased 

eb with increasing polyester content. The graft copolymers exhibited better mechanical properties 

than the corresponding blends prepared from similar polyester content, suggesting that the 

nanoscale phase separation occurring for the copolymers was important for their mechanical 

properties. The degradation of the materials in 5 M NaOH was also studied and it was found that 
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despite the high polyester content of some of the materials, no significant mass loss was 

observed. These results suggest that polyester grafts can be onto butyl rubber in order to tune its 

properties for different applications, while still preserving the high stability of butyl rubber. The 

use of polyester grafts rather than chemical cross-linking approaches may be particularly useful 

for biomedical applications as polyesters have already been demonstrated to be biocompatible in 

a number of medical devices such as screws, plates, sutures and drug delivery vehicles.  
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Table 1. Content and properties of PIB-polyester graft copolymers. 

Copolymer Polyester-

NH2 

Equiv. of 

polyester-

NH2  

Functionalized 

Isoprene Units 

(%) 

Polyester 

Content 

(wt %) 

Tg 

(°C) 

Tm 

(°C) 

PIB-PCL-900 PCL-900 1.2 >99 15 -67 none 

PIB-PCL-3500a PCL-3500 0.8 50 26 -65 44 

PIB-PCL-3500b PCL-3500 1.2 >99 44 -62 50 

PIB-PDLLA-2800 PDLLA-

2800 

1.2 >99 28 -63, 

23 

none 

 

Table 2. Water contact angles of graft copolymers and the corresponding homopolymers. 

	
Homopolymer/Copolymer Contact Angle (°) 

PCL-OH-900 51 ± 2 

PCL-OH-3500 71 ± 1 

PDLLA-OH-2800 66 ± 2 

PIB-PCL-900 92 ± 1 

PIB-PCL-3500a 92 ± 2 

PIB-PCL-3500b 94 ± 1 

PIB-PDLLA-2800 91 ± 2 
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Table 3. Tensile properties of graft copolymers and polymer blends.  
	

Copolymer/blend 
Polyester 

wt %  

Young’s 

modulus (E), 

MPa 

Young’s 

modulus at 

50% strain 

(E50), MPa 

Ultimate 

tensile 

strength (s), 

MPa 

Elongation at 

break (eb), % 

Butyl rubber 0 0.56 ± 0.12 0.66 ± 0.19 0.25 ± 0.01 740 ± 200 

PIB-PCL-900 15 0.47 ± 0.06 1.1 ± 0.4 1.5 ± 0.2 1220 ± 180 

PIB-PCL-3500a 26 0.74 ± 0.15 1.1 ± 0.3 1.2 ± 0.1 450 ± 65 

PIB-PCL-3500b 44 22 ± 6 10 ± 1 3.9 ± 1.0 170 ± 30 

PIB-PDLLA-

2800 

30 2.9 ± 0.4 3.1 ± 0.5 4.0 ± 0.9 250 ± 50 

Butyl rubber/PCL 

blend 

15 1.8  ± 1.6 0.79 ± 0.15 0.28 ± 0.04  520 ± 110 

Butyl rubber/PCL 

blend 

32 2.3 ± 2.2 0.95 ± 0.18 0.18 ± 0.03  270 ± 80 

Butyl rubber/PCL 

blend 

44 5.3 ± 2.3 1.2 ± 0.1 0.18 ± 0.043  140 ± 50 

Butyl rubber/ 

PDLLA blend 

30 15 ± 5 NA 0.62 ± 0.06  250 ± 70 
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