14,056 research outputs found
Deposit Central School District and Deposit Teachers Association
In the Matter of Impasse Between The Deposit Central School District and The Deposit Teacher Association. PERB Case M2006-053. Sally C. Gillespie, Fact Finder
Internal thermal noise in the LIGO test masses : a direct approach
The internal thermal noise in LIGO's test masses is analyzed by a new
technique, a direct application of the Fluctuation-Dissipation Theorem to
LIGO's readout observable, (longitudinal position of test-mass face,
weighted by laser beam's Gaussian profile). Previous analyses, which relied on
a normal-mode decomposition of the test-mass motion, were valid only if the
dissipation is uniformally distributed over the test-mass interior, and they
converged reliably to a final answer only when the beam size was a
non-negligible fraction of the test-mass cross section. This paper's direct
analysis, by contrast, can handle inhomogeneous dissipation and arbitrary beam
sizes. In the domain of validity of the previous analysis, the two methods give
the same answer for , the spectral density of thermal noise, to within
expected accuracy. The new analysis predicts that thermal noise due to
dissipation concentrated in the test mass's front face (e.g. due to mirror
coating) scales as , by contrast with homogeneous dissipation, which
scales as ( is the beam radius); so surface dissipation could
become significant for small beam sizes.Comment: 6 pages, RevTex, 1 figur
Could Fire and Rescue Services identify older people at risk of falls?
Protecting or improving the efficiency and effectiveness of services while reducing costs in response to public sector funding reductions is a significant challenge for all public service organisations. Preventing falls in older people is a major public health objective. We propose here an innovative model of community partnership with Fire and Rescue Services assisting falls prevention services to enhance the safety and well-being of older people in local communities through early identification of those who are at risk of injury from a fall or accidental domestic fire
Stronger computational modelling of signalling pathways using both continuous and discrete-state methods
Starting from a biochemical signalling pathway model expresses in a process algebra enriched with quantitative information, we automatically derive both continuous-space and discrete-space representations suitable for numerical evaluation. We compare results obtained using approximate stochastic simulation thereby exposing a flaw in the use of the differentiation procedure producing misleading results
Variation of turbulent burning rate of methane, methanol, and iso-octane air mixtures with equivalence ratio at elevated pressure
Turbulent burning velocities for premixed methane, methanol, and iso-octane/air mixtures have been experimentally determined for an rms turbulent velocity of 2 m/s and pressure of 0.5 MPa for a wide range of equivalence ratios. Turbulent burning velocity data were derived using high-speed schlieren photography and transient pressure recording; measurements were processed to yield a turbulent mass rate burning velocity, utr. The consistency between the values derived using the two techniques, for all fuels for both fuel-lean and fuel-rich mixtures, was good. Laminar burning measurements were made at the same pressure, temperature, and equivalence ratios as the turbulent cases and laminar burning velocities and Markstein numbers were determined. The equivalence ratio (φ) for peak turbulent burning velocity proved not always coincident with that for laminar burning velocity for the same fuel; for isooctane, the turbulent burning velocity unexpectedly remained high over the range φ = 1 to 2. The ratio of turbulent to laminar burning velocity proved remarkably high for very rich iso-octane/air and lean methane/air mixtures
Low secondary electron yield engineered surface for electron cloud mitigation
Secondary electron yield (SEY or δ) limits the performance of a number of devices. Particularly, in high-energy charged particle accelerators, the beam-induced electron multipacting is one of the main sources of electron cloud (e-cloud) build up on the beam path; in radio frequency wave guides, the electron multipacting limits their lifetime and causes power loss; and in detectors, the secondary electrons define the signal background and reduce the sensitivity. The best solution would be a material with a low SEY coating and for many applications δ < 1 would be sufficient. We report on an alternative surface preparation to the ones that are currently advocated. Three commonly used materials in accelerator vacuum chambers (stainless steel, copper, and aluminium) were laser processed to create a highly regular surface topography. It is shown that this treatment reduces the SEY of the copper, aluminium, and stainless steel from δmax of 1.90, 2.55, and 2.25 to 1.12, 1.45, and 1.12, respectively. The δmax further reduced to 0.76-0.78 for all three treated metals after bombardment with 500 eV electrons to a dose between 3.5 × 10-3 and 2.0 × 10-2 C·mm-2
Associated strangeness production in the pp to pK^+K^-p and pp to pK^+ pi^0 Sigma^0 reactions
The total and differential cross sections for associated strangeness
production in the and reactions
have been studied in a unified approach using an effective Lagrangian model. It
is assumed that both the and final states originate from
the decay of the resonance which was formed in the production
chain . The available experimental data
are well reproduced, especially the ratio of the two total cross sections,
which is much less sensitive to the particular model of the entrance channel.
The significant coupling of the resonance to is
further evidence for large components in the quark wave function of
the resonance.Comment: Published in Phys. Rev.
- …
