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Secondary electron yield (SEY or d) limits the performance of a number of devices. Particularly, in

high-energy charged particle accelerators, the beam-induced electron multipacting is one of the

main sources of electron cloud (e-cloud) build up on the beam path; in radio frequency wave

guides, the electron multipacting limits their lifetime and causes power loss; and in detectors, the

secondary electrons define the signal background and reduce the sensitivity. The best solution

would be a material with a low SEY coating and for many applications d< 1 would be sufficient.

We report on an alternative surface preparation to the ones that are currently advocated. Three

commonly used materials in accelerator vacuum chambers (stainless steel, copper, and aluminium)

were laser processed to create a highly regular surface topography. It is shown that this treatment

reduces the SEY of the copper, aluminium, and stainless steel from dmax of 1.90, 2.55, and 2.25 to

1.12, 1.45, and 1.12, respectively. The dmax further reduced to 0.76–0.78 for all three treated metals

after bombardment with 500 eV electrons to a dose between 3.5� 10�3 and 2.0� 10�2 C�mm�2.
VC 2014 Author(s). All article content, except where otherwise noted, is licensed under a Creative
Commons Attribution 3.0 Unported License. [http://dx.doi.org/10.1063/1.4902993]

The electron cloud (e-cloud) is an unwanted effect limit-

ing the performance of high-energy colliders, storage rings,

and damping rings such as LHC,1 ILC,2 KEKB,3 DAFNE,4

RHIC,5 etc. E-clouds can affect the operation and perform-

ance of high-energy charged particle accelerators in a variety

of ways. They can induce an increase in vacuum pressure,

beam instability, beam losses, emittance growth, reduction

in the beam lifetime, or additional heat loads on a cryogenic

vacuum chamber. In the past 15 years, significant effort has

been made on e-cloud mitigation, and a number of techni-

ques have been developed: low secondary electron yield

(SEY) thin film coatings, mechanical grooving, clearing

electrodes, external solenoid windings, and finally optimis-

ing the beam train parameters to avoid high intensity reso-

nant conditions.6 The initial electrons appear in residual gas

ionisation by beam particles or due to photoelectron emis-

sion from beam pipe walls under synchrotron radiation emit-

ted by accelerated particles in dipoles and quadrupoles.

These primary electrons are accelerated in the electric field

of the passing bunches and can acquire kinetic energies of up

to several hundreds of eV. In turn, on colliding with the walls

of the chamber, they can produce secondary electrons. An

electron multipacting can be triggered in the case of resonant

conditions generated by the electromagnetic field of the

beam train. Although the primary photon induced emission

and gas ionisation could be a significant source of electrons,

the electron-wall impact, with energies in the range of 100 to

300 eV and the SEY (d) greater than 1, and certain resonant

conditions of the beam pattern can increase the electron den-

sity by several orders of magnitude over the primary electron

density.7 This amplification leads to build-up and dissipation

of the e-cloud density ne.
The secondary electrons can also affect the performance

of other instruments. In radio frequency (RF) waveguides,

the electron multipacting causes power loss, and multipact-

ing electrons damage the surface and limit the lifetime of the

waveguides. In detectors, the secondary electrons define the

signal background and reduce the sensitivity. In addition,

satellites in space suffer from problems that greatly resemble

the e-cloud in accelerators and waveguides. These problems

include the motion of satellites through electron clouds in

outer space, the relative charging of satellite components

under the influence of sunlight, and loss of performance of

high power microwave devices on space satellites.

The sufficient condition for suppressing the effect of elec-

tron multipacting is d< 1. It has been shown both theoretically

and experimentally that the e-cloud density build-up depends

on the SEY function d(E) over all electron-wall impact energy

and beam train parameters. In order to minimize the effects of

e-cloud, the maximum value of d(E), dmax¼max(d(E)),
should be less than a certain threshold value; for example,

dmax< 1.3 in the Super Proton Synchrotron (SPS) at

CERN.8–11

Typically, in particle accelerators, the SEY gradually

decreases in time with machine operation due to bombardment

of the vacuum chamber walls with synchrotron radiation

and multipacting electrons. This decrease (known as the

“conditioning effect”) affects the surface chemistry through a

gradual build-up of a thin layer of graphitic-like C-C carbon.12

However, in many cases even with d(E) decreasing to its lowest
levels,13,14 this may still not be low enough to avoid e-cloud.

Since the SEY is influenced by the wall material, surface

chemistry, topography, and electron energy, deliberatea)Electronic mail: oleg.malyshev@stfc.ac.uk
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mitigation mechanisms are based on engineering the above

parameters. There are a few ways to reduce the SEY:

(a) by choosing materials with a low SEY value (e.g., Cu

has a lower SEY value than Al);15

(b) by modifying the surface geometry (making grooves);16–18

(c) by coating with low SEY materials (such as TiN,15,19,20

non-evaporable getter (NEG),21–23 and amorphous car-

bon (a-C)24,25);

(d) by coating with a low SEY microstructure (columnar

NEG is better than dense);

(e) by implementing weak solenoidal fields (10–20G) to

trap the electrons;26

(f) by using clearing electrodes;15

(g) or by various combinations of the above.

In this paper, we report on the SEY of metal surfaces modi-

fied upon a nanosecond pulsed laser irradiation, leading to the

formation of highly organised surface microstructures. It is

known that laser irradiation can transform highly reflective met-

als to black or dark coloured metal.27–30 This broadband

absorption of electromagnetic radiation, typically around

85–95% and ranging from ultraviolet to infrared, is widely attrib-

uted to the formation and combined actions of surface nano- and

micro-structures produced by laser processing of metals.

The surface treatment (blackening) was carried out on a

surface of commercially available copper (Cu), aluminium

(Al), and 316L stainless steel (SS) foils with a purity of

99.999% of 1-mm thickness. Prior to laser exposure, the

samples were degreased. A Nd:YVO4 laser with maximum

average power of 20W at k¼ 1064 nm (for processing Al

and stainless steel foils) and 10W at k¼ 532 nm (for proc-

essing Cu foil) was utilized for irradiation of the samples in

an argon atmosphere at room temperature. The diameter of

the laser beam focused spot on each target, between the

points where the intensity has fallen to 1/e2 of the central

value, was measured to be 60 lm. The laser beam had a

Gaussian intensity profile (M2� 1.1) and was focused onto

the target surfaces using a flat field scanning lens system, a

specialised lens system in which the focal plane of the

deflected laser beam is a flat surface. The average laser fluen-

ces employed for processing were 6.1, 6.8, and 3.6 J/cm2 for

copper, aluminium, and stainless steel, respectively. The

beam was raster-scanned over the surface of the targets in

both the horizontal and vertical directions using a computer-

controlled scanner system.27 Figure 1 shows images of Cu

samples with and without the laser treatment.

The SEY measurement was carried out on a dedicated

system comprising a low energy electron gun ranging from

10 to 1000 eV and a Faraday cup. A schematic layout of the

experimental setup is shown in Fig. 2. The sample is an inte-

gral part of the Faraday cup but at the same time is electri-

cally isolated from it. In this configuration, the current

associated with each part can be measured independently. A

negative bias voltage (�18V) with respect to the Faraday

cup, which is held at ground, is applied to the sample, in

order to repel all the secondary electrons from the sample to

the Faraday cup. Before performing the experiments, the

bias of U¼�18V was experimentally determined to be

above the saturation value of d(U) for the used geometry.

The total SEY, d, is defined as the ratio of the secondary

electrons leaving the sample surface (IF) to the number of

incident electrons (Ig)

d ¼ IF
Ig

¼ IF
IF þ IS

; (1)

where IS is the current measured on the negatively biased

sample.

The SEY measurements were carried out with the elec-

tron beam at normal incidence and area of 0.28 cm2 at vari-

ous energies ranging from 80 to 1000 eV with a current of a

few tens of nA in order to minimize the electron beam condi-

tioning effect (i.e., change in the surface chemistry due to

electron beam bombardment) during data acquisition. A sep-

arate electron gun capable of producing a current of a few

tens of lA at energies ranging from 0.5 to 2 keV over a rela-

tively large area (1.5 cm2) was used to simulate the condi-

tioning effect. All conditionings in the reported experiment

were performed with 495 eV electrons.

The SEY results as a function of energy of the primary

electrons are shown in Figs. 3–5 for samples of Cu, 316L

stainless steel, and Al, respectively, with and without laser

treatment. These dependences can be described in terms of a

maximum value of SEY, dmax¼max(d(E)), measured at cor-

responding primary electron energy Emax. It can be seen that

dmax of the as-received laser treated sample is almost a factor

of 2 lower than the respective untreated sample. Figure 3

depicts that for the laser-treated Cu foil, dmax¼ 1.05 as com-

pared with dmax¼ 1.85 for untreated and furthermore shows

that the SEY reduction is more significant for low energy pri-

mary electrons. The results of dmax and Emax for as-received

laser treated and conditioned samples are given in Table I.

The astonishingly low value of dmax for as-received is only

due to the surface topography induced by the laser process-

ing. The XPS chemical analysis of the Cu surface showed

almost the same surface chemistry for both samples, as

shown in Table II. This held true for all other metal surfaces

FIG. 1. High-resolution images of the

Cu samples: (a) untreated and (b) laser

treated.

231605-2 Valizadeh et al. Appl. Phys. Lett. 105, 231605 (2014)



(i.e., Al and stainless steel) in this report. This is in line with

the results reported25,31–33 with mechanical grooving and

black gold and copper34,35 deposited with magnetron sputter-

ing, where the induced surface topography achieved with

different techniques reduced dmax compared with a normal

smooth surface. This mitigation technique based on a laser

treated surface in all cases leads to the lowest as-received

dmax in comparison to all other known techniques with the

only exclusion of plasma sprayed boron carbide which has a

reported value of dmax¼ 0.55.36

The electron conditioning, in the range of applied pri-

mary electron energy from 80 to 1000 eV, also leads to the

SEY decrease for all samples, see Figs. 3–5. For Cu foil, the

dmax (measured at corresponding primary electron energy

Emax¼ 600 eV) decreases to 0.78 for all the laser treated

samples after an electron dose of 3.5� 10�3–2.0� 10�2

C�mm�2 as compared to dmax¼ 1.25 (with Emax¼ 600 eV)

for the untreated sample over the same electron dose. The

dependence of dmax as a function of electron dose is shown

in Fig. 6. All samples demonstrate the continuous reduction

of SEY with electron dose. The lowest measured dmax values

for Cu, Al, and stainless steel are summarised in Table I.

The reduction of dmax as a function of electron dose has

been observed and reported by many authors. It is attributed

to a change in the surface chemistry due to electron-beam-

induced transformation of CuO to sub-stoichiometric oxide

and build-up of a thin graphitic C-C bonding layer on the

surface, as shown in XPS results in Table II. It can be seen

that after electron bombardement, the peaks corresponding

to Cu(II) shake-up at 943 eV and the C1s at 288 eV have dis-

appeared, with a reduction of O1s peak area at 531 eV.

With respect to possible applications, it is important to

mention that even the initial dmax is so low that it can help

solving or dramatically reducing problems related to SEY,

e-cloud, and electron multipacting. For example, the thresh-

old e-cloud condition for the SPS is dmax< 1.3; therefore,

applying this treatment to its stainless steel vacuum chamber

with initial dmax¼ 1.1 could instantly suppress the SPS

e-cloud problem. The threshold e-cloud condition is

dmax< 1.5 for LHC arcs and dmax< 1.2 near the interaction

regions.37 Applying this treatment to Cu-plated stainless

steel beam screens in the arcs with initial dmax¼ 1.1 will also

suppress e-cloud and allow an e-cloud-free LHC upgrade

FIG. 3. SEY for Cu as a function of incident electron energy: Cu—untreated

surface, black Cu—laser treated surface, and conditioning—electron bom-

bardment with a dose of 1.0� 10�2 C�mm�2 for Cu and 3.5� 10�3 C�mm�2

for black Cu.

FIG. 4. SEY for 316L stainless steel as a function of incident electron

energy: SS—untreated surface, black SS—laser treated surface, and condi-

tioning—electron bombardment with a dose of 1.7� 10�2 C�mm�2.

FIG. 5. SEY for Al as a function of incident electron energy: Al—untreated

surface, black Al—laser treated surface, and conditioning—electron bom-

bardment with a dose of 1.5� 10�2 C�mm�2 for Al and 2.0� 10�2 C�mm�2

for black Al.

FIG. 2. Schematic layout of the SEY measurements.

TABLE I. The dmax of as-received and conditioned samples.

Sample

Initial After conditioning to Qmax

dmax Emax (eV) dmax (Qmax) Emax (eV) Qmax (C�mm�2)

Black Cu 1.12 600 0.78 600 3.5� 10�3

Black SS 1.12 900 0.76 900 1.7� 10�2

Black Al 1.45 900 0.76 600 2.0� 10�2

Cu 1.90 300 1.25 200 1.0� 10�2

SS 2.25 300 1.22 200 1.7� 10�2

Al 2.55 300 1.34 200 1.5� 10�2

231605-3 Valizadeh et al. Appl. Phys. Lett. 105, 231605 (2014)



(HiLumi). However, since the power dissipation in the cryo-

genic vacuum chamber due to electron multipacting could

still be too high, a beam vacuum chamber with dmax� 1

would be the best solution.

One of the significant worries in using many e-cloud

mitigation techniques is that introducing a layer of material

different from the selected one for a beam vacuum chamber

or machining grooves or inserting electrodes can affect wall

impedance and wake fields in the beam vacuum chamber.

The surface treatment suggested in this work does not intro-

duce new material, it modifies the microstructure of the sur-

face; therefore, it is expected that the impact on wall

impedance and wake fields should be less than from any

other e-cloud mitigation techniques. Furthermore, this tech-

nique can easily be applied for existing vacuum surfaces

where the improvement has to be done in-situ with minimum

disturbance to the beam line. The laser surface treatment

changes only the topography, while the material remains the

same. The blackening process is carried out in an inert gas

environment at atmospheric pressure; therefore, the actual

cost of the mitigation is considerably lower and is a fraction

of that of existing mitigation processes. The surface is highly

reproducible and offers a very stable surface chemistry

which can be influenced during the process. The surface is

robust and is immune to any surface delamination which can

be a detrimental problem for thin film coating.

In conclusion, laser blackening of the metal surface is a

very viable solution for reducing the SEY to values below

1.45 for Al and 1.12 for Cu and stainless steel. The advant-

age of this method over currently and commonly used

e-cloud mitigations such as thin film deposition (TiN, NEG,

and amorphous carbon) and mechanical grooves is that the

process is readily scalable to large areas.

This work was conducted under the aegis of the Science

& Technology Facility Council (STFC) and Engineering &

Physical Sciences Research Council (EPSRC) of the United

Kingdom. Amin Abdolvand is an EPSRC Career Acceleration

Fellow at the University of Dundee (EP/I004173/1).
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