67 research outputs found

    Sovereignty, self-determination and the South-West Pacific: A comparison of the status of Pacific Island territorial entities in international law

    Get PDF
    This paper compares the constitutional arrangements of various territorial entities in the South-West Pacific, leading to a discussion of those entities’ status in international law. In particular, it examines the Cook Islands, Niue, Tokelau, Norfolk Island, French Polynesia, New Caledonia and American Samoa – all of which are perceived as ‘Territories’ in the international community – as a way of critically examining the concept of ‘Statehood’ in international law. The study finds that many of these ‘Territories’ do not necessarily fit the classification that they have been given. In particular, most of the territorial entities listed above have significant competence to control their own domestic affairs. Some have also begun to develop their own international legal personality by virtue of de facto control over their own external affairs. The United Nations’ focus on ensuring self-determination also indicates that these territorial entities are likely to gain more autonomy as time goes on. As a result, this paper argues that some of the ‘Territories’ are not necessarily Territories at all; instead, they possess independent control over their own domestic and external affairs, and therefore act as de facto States on the global stage. However, many of these territorial entities still remain heavily associated with recognised sovereign States, with none of the included territorial entities possessing their own de jure Head of State or citizenship: both of which are arguably key foundations of an independent identity. Consequently, there are still questions over the extent to which the territorial entities can be considered sovereign, especially given that the relevant ‘administering States’ still seem to take economic responsibility for their territorial entities if they believe the situation warrants it. Given these points, this paper argues in favour of a reconceptualisation of the concept of Statehood. It argues that the rise of territorial entities which not only have independent control over their affairs, but which also have significant links to existing States, means that terms such as independence and sovereignty are not either/or concepts. Instead, these concepts should be seen as spectrums, giving rise to a broader definition of Statehood that does not restrictively define States as independent, sovereign entities, but that embraces the concept of ‘Freely Associated States’

    Closing the Deep Space Communications Link with Commercial Assets

    Get PDF
    Growing commercial and governmental interest in lunar and asteroid resource extraction, as well as continuing interest in deep space scientific missions, means an increase in demand for deep space communications systems. Jet Propulsion Laboratory’s MarCo demonstrated the viability and usefulness of cubesats as relay stations for deep space communications. Given their relatively low cost of construction and launch, cubesats can decrease the cost of building deep space communication systems. This has the potential to make it feasible for a group without a large budget, such as a university cubesat team, to build such a system. However, while minimizing the cost of the satellite is important, it is only one part of the communications link. The ground station is the other. The cost of accessing the Deep Space Network puts it out of reach for most operations that are not NASA programs, including our student-designed and built University of Colorado Earth Escape Explorer (CU-E3) 6U cubesat. This means that a project such as ours has to look at options provided by commercial ground station services. As a competitor in the NASA Cubequest Challenge Deep Space Derby, the CU-E3 team’s goal is to demonstrate it is possible to build a deep space communications system that is small, powerful, and (relatively) low cost. This means not just the hardware on the satellite but also the ground station. On the satellite side, we have developed custom hardware to interface with an AstroDev Li-2 radio for C-band uplink. For downlink, we will be using an X-band radio developed for low earth applications at the University of Colorado Boulder under the NASA Small Satellite Technology Development program. For ground station services, we will be partnering with a commercial provider, ATLAS. This paper describes the architecture of the CU-E3 communications system, the challenges of developing a communications system small enough to fit in a 6U cubesat yet powerful enough for deep space, and the process we used to research and partner with a commercial ground station service to help us fulfill our mission

    Explaining health managers' information seeking behaviour and use

    Get PDF
    The aims of the project were to analyse the information behaviour of health service managers in decision-making, to identify the facilitators and barriers to the use of information, and to develop guidelines for improving practice. The study employed a mixed methodology in two phases - five qualitative case studies, and a national survey of managers, and NHS librarians. Managers used a variety of different sources, online, written, people/ networks, and education and training courses. Internet/online sources were very widely used, but personal contacts are more important, and there was also a heavy use of internal Trust data. Only one third found it easy to find information relevant to their work as a manager. They also found it difficult to access information either through lack of time, information overload, or not knowing where to find it. Training in information search was helpful, but those with significant expertise in search and research based sources – librarians and medical staff – reported most difficulty in finding information related to management. However, those who have studied management find it easier, indicating that grounding in management knowledge is important for effective search, selection and application

    Thermodynamic performance and water consumption of hybrid cooling system configurations for concentrated solar power plants

    Get PDF
    The use of wet cooling in Concentrated Solar Power (CSP) plants tends to be an unfavourable option in regions where water is scarce due to the high water requirements of the method. Dry-cooling systems allow a water consumption reduction of up to 80% but at the expense of lower electricity production. A hybrid cooling system (the combination of dry and wet cooling) offers the advantages of each process in terms of lower water consumption and higher electricity production. A model of a CSP plant which integrates a hybrid cooling system has been implemented in Thermoflex software. The water consumption and the net power generation have been evaluated for different configurations of the hybrid cooling system: series, parallel, series-parallel and parallel-series. It was found that the most favourable configuration in terms of water saving was series-parallel, in which a water reduction of up to 50% is possible compared to the only-wet cooling option, whereas an increase of 2.5% in the power generation is possible compared to the only-dry cooling option. The parallel configuration was the best in terms of power generation with an increase of 3.2% when compared with the only-dry cooling option, and a reduction of 30% water consumption compared to the only-wet cooling optio

    The mechanisms and processes of connection: developing a causal chain model capturing impacts of receiving recorded mental health recovery narratives.

    Get PDF
    BACKGROUND: Mental health recovery narratives are a core component of recovery-oriented interventions such as peer support and anti-stigma campaigns. A substantial number of recorded recovery narratives are now publicly available online in different modalities and in published books. Whilst the benefits of telling one's story have been investigated, much less is known about how recorded narratives of differing modalities impact on recipients. A previous qualitative study identified connection to the narrator and/or to events in the narrative to be a core mechanism of change. The factors that influence how individuals connect with a recorded narrative are unknown. The aim of the current study was to characterise the immediate effects of receiving recovery narratives presented in a range of modalities (text, video and audio), by establishing the mechanisms of connection and the processes by which connection leads to outcomes. METHOD: A study involving 40 mental health service users in England was conducted. Participants were presented with up to 10 randomly-selected recovery narratives and were interviewed on the immediate impact of each narrative. Thematic analysis was used to identify the mechanisms of connection and how connection leads to outcome. RESULTS: Receiving a recovery narrative led participants to reflect upon their own experiences or those of others, which then led to connection through three mechanisms: comparing oneself with the narrative and narrator; learning about other's experiences; and experiencing empathy. These mechanisms led to outcomes through three processes: the identification of change (through attending to narrative structure); the interpretation of change (through attending to narrative content); and the internalisation of interpretations. CONCLUSIONS: This is the first study to identify mechanisms and processes of connection with recorded recovery narratives. The empirically-based causal chain model developed in this study describes the immediate effects on recipients. This model can inform selection of narratives for use in interventions, and be used to support peer support workers in recounting their own recovery narratives in ways which are maximally beneficial to others

    The ESCAPE project : Energy-efficient Scalable Algorithms for Weather Prediction at Exascale

    Get PDF
    In the simulation of complex multi-scale flows arising in weather and climate modelling, one of the biggest challenges is to satisfy strict service requirements in terms of time to solution and to satisfy budgetary constraints in terms of energy to solution, without compromising the accuracy and stability of the application. These simulations require algorithms that minimise the energy footprint along with the time required to produce a solution, maintain the physically required level of accuracy, are numerically stable, and are resilient in case of hardware failure. The European Centre for Medium-Range Weather Forecasts (ECMWF) led the ESCAPE (Energy-efficient Scalable Algorithms for Weather Prediction at Exascale) project, funded by Horizon 2020 (H2020) under the FET-HPC (Future and Emerging Technologies in High Performance Computing) initiative. The goal of ESCAPE was to develop a sustainable strategy to evolve weather and climate prediction models to next-generation computing technologies. The project partners incorporate the expertise of leading European regional forecasting consortia, university research, experienced high-performance computing centres, and hardware vendors. This paper presents an overview of the ESCAPE strategy: (i) identify domain-specific key algorithmic motifs in weather prediction and climate models (which we term Weather & Climate Dwarfs), (ii) categorise them in terms of computational and communication patterns while (iii) adapting them to different hardware architectures with alternative programming models, (iv) analyse the challenges in optimising, and (v) find alternative algorithms for the same scheme. The participating weather prediction models are the following: IFS (Integrated Forecasting System); ALARO, a combination of AROME (Application de la Recherche a l'Operationnel a Meso-Echelle) and ALADIN (Aire Limitee Adaptation Dynamique Developpement International); and COSMO-EULAG, a combination of COSMO (Consortium for Small-scale Modeling) and EULAG (Eulerian and semi-Lagrangian fluid solver). For many of the weather and climate dwarfs ESCAPE provides prototype implementations on different hardware architectures (mainly Intel Skylake CPUs, NVIDIA GPUs, Intel Xeon Phi, Optalysys optical processor) with different programming models. The spectral transform dwarf represents a detailed example of the co-design cycle of an ESCAPE dwarf. The dwarf concept has proven to be extremely useful for the rapid prototyping of alternative algorithms and their interaction with hardware; e.g. the use of a domain-specific language (DSL). Manual adaptations have led to substantial accelerations of key algorithms in numerical weather prediction (NWP) but are not a general recipe for the performance portability of complex NWP models. Existing DSLs are found to require further evolution but are promising tools for achieving the latter. Measurements of energy and time to solution suggest that a future focus needs to be on exploiting the simultaneous use of all available resources in hybrid CPU-GPU arrangements

    The ESCAPE project: Energy-efficient Scalable Algorithms for Weather Prediction at Exascale

    Get PDF
    Abstract. In the simulation of complex multi-scale flows arising in weather and climate modelling, one of the biggest challenges is to satisfy strict service requirements in terms of time to solution and to satisfy budgetary constraints in terms of energy to solution, without compromising the accuracy and stability of the application. These simulations require algorithms that minimise the energy footprint along with the time required to produce a solution, maintain the physically required level of accuracy, are numerically stable, and are resilient in case of hardware failure. The European Centre for Medium-Range Weather Forecasts (ECMWF) led the ESCAPE (Energy-efficient Scalable Algorithms for Weather Prediction at Exascale) project, funded by Horizon 2020 (H2020) under the FET-HPC (Future and Emerging Technologies in High Performance Computing) initiative. The goal of ESCAPE was to develop a sustainable strategy to evolve weather and climate prediction models to next-generation computing technologies. The project partners incorporate the expertise of leading European regional forecasting consortia, university research, experienced high-performance computing centres, and hardware vendors. This paper presents an overview of the ESCAPE strategy: (i) identify domain-specific key algorithmic motifs in weather prediction and climate models (which we term Weather & Climate Dwarfs), (ii) categorise them in terms of computational and communication patterns while (iii) adapting them to different hardware architectures with alternative programming models, (iv) analyse the challenges in optimising, and (v) find alternative algorithms for the same scheme. The participating weather prediction models are the following: IFS (Integrated Forecasting System); ALARO, a combination of AROME (Application de la Recherche Ă  l'OpĂ©rationnel Ă  Meso-Echelle) and ALADIN (Aire LimitĂ©e Adaptation Dynamique DĂ©veloppement International); and COSMO–EULAG, a combination of COSMO (Consortium for Small-scale Modeling) and EULAG (Eulerian and semi-Lagrangian fluid solver). For many of the weather and climate dwarfs ESCAPE provides prototype implementations on different hardware architectures (mainly Intel Skylake CPUs, NVIDIA GPUs, Intel Xeon Phi, Optalysys optical processor) with different programming models. The spectral transform dwarf represents a detailed example of the co-design cycle of an ESCAPE dwarf. The dwarf concept has proven to be extremely useful for the rapid prototyping of alternative algorithms and their interaction with hardware; e.g. the use of a domain-specific language (DSL). Manual adaptations have led to substantial accelerations of key algorithms in numerical weather prediction (NWP) but are not a general recipe for the performance portability of complex NWP models. Existing DSLs are found to require further evolution but are promising tools for achieving the latter. Measurements of energy and time to solution suggest that a future focus needs to be on exploiting the simultaneous use of all available resources in hybrid CPU–GPU arrangements
    • 

    corecore