6,404 research outputs found

    Bread board float zone experiment system for high purity silicon

    Get PDF
    A breadboard float zone experimental system has been established at Westech Systems for use by NASA in the float zone experimental area. A used zoner of suitable size and flexibility was acquired and installed with the necessary utilities. Repairs, alignments and modifications were made to provide for dislocation free zoning of silicon. The zoner is capable of studying process parameters used in growing silicon in gravity and is flexible to allow trying of new features that will test concepts of zoning in microgravity. Characterizing the state of the art molten zones of a growing silicon crystal will establish the data base against which improvements of zoning in gravity or growing in microgravity can be compared. 25 mm diameter was chosen as the reference size, since growth in microgravity will be at that diameter or smaller for about the next 6 years. Dislocation free crystals were growtn in the 100 and 111 orientations, using a wide set of growth conditions. The zone shape at one set of conditions was measured, by simultaneously aluminum doping and freezing the zone, lengthwise slabbing and delineating by etching. The whole set of crystals, grown under various conditions, were slabbed, polished and striation etched, revealing the growth interface shape and the periodic and aperiodic natures of the striations

    Fourier Magnetic Imaging with Nanoscale Resolution and Compressed Sensing Speed-up using Electronic Spins in Diamond

    Full text link
    Optically-detected magnetic resonance using Nitrogen Vacancy (NV) color centres in diamond is a leading modality for nanoscale magnetic field imaging, as it provides single electron spin sensitivity, three-dimensional resolution better than 1 nm, and applicability to a wide range of physical and biological samples under ambient conditions. To date, however, NV-diamond magnetic imaging has been performed using real space techniques, which are either limited by optical diffraction to 250 nm resolution or require slow, point-by-point scanning for nanoscale resolution, e.g., using an atomic force microscope, magnetic tip, or super-resolution optical imaging. Here we introduce an alternative technique of Fourier magnetic imaging using NV-diamond. In analogy with conventional magnetic resonance imaging (MRI), we employ pulsed magnetic field gradients to phase-encode spatial information on NV electronic spins in wavenumber or k-space followed by a fast Fourier transform to yield real-space images with nanoscale resolution, wide field-of-view (FOV), and compressed sensing speed-up.Comment: 31 pages, 10 figure

    A transverse current rectification in graphene superlattice

    Full text link
    A model for energy spectrum of superlattice on the base of graphene placed on the striped dielectric substrate is proposed. A direct current component which appears in that structure perpendicularly to pulling electric field under the influence of elliptically polarized electromagnetic wave was derived. A transverse current density dependence on pulling field magnitude and on magnitude of component of elliptically polarized wave directed along the axis of a superlattice is analyzed.Comment: 12 pages, 6 figure

    Electron affinities of the first- and second- row atoms: benchmark ab initio and density functional calculations

    Full text link
    A benchmark ab initio and density functional (DFT) study has been carried out on the electron affinities of the first- and second-row atoms. The ab initio study involves basis sets of spdfghspdfgh and spdfghispdfghi quality, extrapolations to the 1-particle basis set limit, and a combination of the CCSD(T), CCSDT, and full CI electron correlation methods. Scalar relativistic and spin-orbit coupling effects were taken into account. On average, the best ab initio results agree to better than 0.001 eV with the most recent experimental results. Correcting for imperfections in the CCSD(T) method improves the mean absolute error by an order of magnitude, while for accurate results on the second-row atoms inclusion of relativistic corrections is essential. The latter are significantly overestimated at the SCF level; for accurate spin-orbit splitting constants of second-row atoms inclusion of (2s,2p) correlation is essential. In the DFT calculations it is found that results for the 1st-row atoms are very sensitive to the exchange functional, while those for second-row atoms are rather more sensitive to the correlation functional. While the LYP correlation functional works best for first-row atoms, its PW91 counterpart appears to be preferable for second-row atoms. Among ``pure DFT'' (nonhybrid) functionals, G96PW91 (Gill 1996 exchange combined with Perdew-Wang 1991 correlation) puts in the best overall performance. The best results overall are obtained with the 1-parameter hybrid modified Perdew-Wang (mPW1) exchange functionals of Adamo and Barone [J. Chem. Phys. {\bf 108}, 664 (1998)], with mPW1LYP yielding the best results for first-row, and mPW1PW91 for second-row atoms. Indications exist that a hybrid of the type aa mPW1LYP + (1−a)(1-a) mPW1PW91 yields better results than either of the constituent functionals.Comment: Phys. Rev. A, in press (revised version, review of issues concerning DFT and electron affinities added

    Standardized Outcomes in Nephrology-Transplantation: A Global Initiative to Develop a Core Outcome Set for Trials in Kidney Transplantation.

    Get PDF
    BACKGROUND: Although advances in treatment have dramatically improved short-term graft survival and acute rejection in kidney transplant recipients, long-term graft outcomes have not substantially improved. Transplant recipients also have a considerably increased risk of cancer, cardiovascular disease, diabetes, and infection, which all contribute to appreciable morbidity and premature mortality. Many trials in kidney transplantation are short-term, frequently use unvalidated surrogate endpoints, outcomes of uncertain relevance to patients and clinicians, and do not consistently measure and report key outcomes like death, graft loss, graft function, and adverse effects of therapy. This diminishes the value of trials in supporting treatment decisions that require individual-level multiple tradeoffs between graft survival and the risk of side effects, adverse events, and mortality. The Standardized Outcomes in Nephrology-Transplantation initiative aims to develop a core outcome set for trials in kidney transplantation that is based on the shared priorities of all stakeholders. METHODS: This will include a systematic review to identify outcomes reported in randomized trials, a Delphi survey with an international multistakeholder panel (patients, caregivers, clinicians, researchers, policy makers, members from industry) to develop a consensus-based prioritized list of outcome domains and a consensus workshop to review and finalize the core outcome set for trials in kidney transplantation. CONCLUSIONS: Developing and implementing a core outcome set to be reported, at a minimum, in all kidney transplantation trials will improve the transparency, quality, and relevance of research; to enable kidney transplant recipients and their clinicians to make better-informed treatment decisions for improved patient outcomes

    Potential Associations between Severity of Infection and the Presence of Virulence-Associated Genes in Clinical Strains of Staphylococcus aureus

    Get PDF
    BACKGROUND: The clinical spectrum of Staphylococcus aureus infection ranges from asymptomatic nasal carriage to osteomyelitis, infective endocarditis (IE) and death. In this study, we evaluate potential association between the presence of specific genes in a collection of prospectively characterized S. aureus clinical isolates and clinical outcome. METHODOLOGY/PRINCIPAL FINDINGS: Two hundred thirty-nine S. aureus isolates (121 methicillin-resistant S. aureus [MRSA] and 118 methicillin-susceptible S. aureus [MSSA]) were screened by array comparative genomic hybridization (aCGH) to identify genes implicated in complicated infections. After adjustment for multiple tests, 226 genes were significantly associated with severity of infection. Of these 226 genes, 185 were not in the SCCmec element. Within the 185 non-SCCmec genes, 171 were less common and 14 more common in the complicated infection group. Among the 41 genes in the SCCmec element, 37 were more common and 4 were less common in the complicated group. A total of 51 of the 2014 sequences evaluated, 14 non-SCCmec and 37 SCCmec, were identified as genes of interest. CONCLUSIONS/SIGNIFICANCE: Of the 171 genes less common in complicated infections, 152 are of unknown function and may contribute to attenuation of virulence. The 14 non-SCCmec genes more common in complicated infections include bacteriophage-encoded genes such as regulatory factors and autolysins with potential roles in tissue adhesion or biofilm formation

    Genome-wide linkage analysis of 972 bipolar pedigrees using single-nucleotide polymorphisms.

    Get PDF
    Because of the high costs associated with ascertainment of families, most linkage studies of Bipolar I disorder (BPI) have used relatively small samples. Moreover, the genetic information content reported in most studies has been less than 0.6. Although microsatellite markers spaced every 10 cM typically extract most of the genetic information content for larger multiplex families, they can be less informative for smaller pedigrees especially for affected sib pair kindreds. For these reasons we collaborated to pool family resources and carried out higher density genotyping. Approximately 1100 pedigrees of European ancestry were initially selected for study and were genotyped by the Center for Inherited Disease Research using the Illumina Linkage Panel 12 set of 6090 single-nucleotide polymorphisms. Of the ~1100 families, 972 were informative for further analyses, and mean information content was 0.86 after pruning for linkage disequilibrium. The 972 kindreds include 2284 cases of BPI disorder, 498 individuals with bipolar II disorder (BPII) and 702 subjects with recurrent major depression. Three affection status models (ASMs) were considered: ASM1 (BPI and schizoaffective disorder, BP cases (SABP) only), ASM2 (ASM1 cases plus BPII) and ASM3 (ASM2 cases plus recurrent major depression). Both parametric and non-parametric linkage methods were carried out. The strongest findings occurred at 6q21 (non-parametric pairs LOD 3.4 for rs1046943 at 119 cM) and 9q21 (non-parametric pairs logarithm of odds (LOD) 3.4 for rs722642 at 78 cM) using only BPI and schizoaffective (SA), BP cases. Both results met genome-wide significant criteria, although neither was significant after correction for multiple analyses. We also inspected parametric scores for the larger multiplex families to identify possible rare susceptibility loci. In this analysis, we observed 59 parametric LODs of 2 or greater, many of which are likely to be close to maximum possible scores. Although some linkage findings may be false positives, the results could help prioritize the search for rare variants using whole exome or genome sequencing

    A Grand Canonical Ensemble Approach to the Thermodynamic Properties of the Nucleon in the Quark-Gluon Coupling Model

    Get PDF
    In this paper, we put forward a way to study the nucleon's thermodynamic properties such as its temperature, entropy and so on, without inputting any free parameters by human hand, even the nucleon's mass and radius. First we use the Lagrangian density of the quark gluon coupling fields to deduce the Dirac Equation of the quarks confined in the gluon fields. By boundary conditions we solve the wave functions and energy eigenvalues of the quarks, and thus get energy-momentum tensor, nucleon mass, and density of states. Then we utilize a hybrid grand canonical ensemble, to generate the temperature and chemical potentials of quarks, antiquarks of three flovars by the four conservation laws of the energy and the valence quark numbers, after which, all other thermodynamic properties are known. The only seemed free paremeter, the nucleon radius is finally determined by the grand potential minimal principle.Comment: 5 pages, LaTe
    • 

    corecore