21 research outputs found

    Reproduction in the externally brooding sea anemone Epiactis georgiana in the Antarctic Peninsula and the Weddell Sea

    Get PDF
    14 pages, 8 figures, 2 tablesExternal parental care is uncommon among actiniarians but common in Epiactis species. Here, several aspects of reproduction are analyzed for of one of them, Epiactis georgiana. Samples were collected in December, January, February, March, and April in the Antarctic Peninsula and the eastern Weddell Sea, during 1998, 2000, 2002, and 2003. Most sexually mature individuals of E. georgiana are male or female, but some are hermaphrodites. This is the first report of hermaphroditism in E. georgiana, which is the third species of the genus with this sexual pattern. The results suggest that oogenesis starts in December and that at least two generations of oocytes overlap; a third generation is often brooded externally. Putative fertilization is likely internal, and larvae and/or embryos are externally brooded on the distal part of the adult column until an advanced developmental stage. Apparently E. georgiana reproduces seasonally, probably releasing the embryos/larvae in the last months of the austral spring (December). Inter-individual variability was observed in gametogenesis. In addition, specimens from the Antarctic Peninsula were larger than those from the Weddell Sea. This study represents the first step in understanding the reproductive mode of E. georgianaSpecial thanks are addressed to Prof. Dr. Wolf Arntz (Alfred-Wegener-Institute, Bremerhaven, Germany) who made possible our participation in several Antarctic projects and cruises. We extend our acknowledgements to the officers and crew of the R/V Polarstern and many colleagues on board during the EASIZ, ANDEEP, and BENDEX cruises for their valuable assistance. Thanks to M. Conradi (Universidad de Sevilla) who collected a considerable amount of the material analyzed in this manuscript. Comments from M. Daly, D. Fautin, and an anonymous reviewer substantially improved this manuscript. Support was provided by a MCT-CSICgrant (I3P-BPD2001-1) to E. Rodríguez and Spanish CICYT projects: ANT97-1533-E, ANT98-1739-E, ANT99-1608-E, REN2001-4269-E/ANT, REN2003-04236, and CGL2004-20141-E. This is a contribution to the SCAR program, Ecology of the Antarctic Sea Ice Zone (EASIZ) and ANDEEP contribution 159Peer reviewe

    Living in close quarters: Epibionts on Dendrophyllia ramea deep-water corals (Cyprus and Menorca Channel)

    Get PDF
    In sharp contrast to shallow and/or tropical coral habitats, the role of deep-water corals (DWC) as habitat providers is not well known and even less understood. For this purpose, epibionts on the deep-water coral Dendrophyllia ramea were studied from samples collected in Cyprus and compared to those from Menorca Channel. A total of 63 species were found; bryozoans (ca. 60%) and serpulid polychaetes (ca. 10%) dominated the assemblage of species. Cyprus (48 species in total) and Menorca (22) corals shared few epizoic species (7). Several of these species were previously thought absent from the Levantine basin. These results are important contributions to the knowledge on the deep-water epibiotic biodiversity of the Levantine Basin and the Mediterranean Sea in genera

    Physiological performance of the cold-water coral Dendrophyllia cornigera reveals its preference for temperate environments

    Get PDF
    Cold-water corals (CWCs) are key ecosystem engineers in deep-sea benthic communities around the world. Their distribution patterns are related to several abiotic and biotic factors, of which seawater temperature is arguably one of the most important due to its role in coral physiological processes. The CWC Dendrophyllia cornigera has the particular ability to thrive in several locations in which temperatures range from 11 to 17 °C, but to be apparently absent from most CWC reefs at temperatures constantly below 11 °C. This study thus aimed to assess the thermal tolerance of this CWC species, collected in the Mediterranean Sea at 12 °C, and grown at the three relevant temperatures of 8, 12, and 16 °C. This species displayed thermal tolerance to the large range of seawater temperatures investigated, but growth, calcification, respiration, and total organic carbon (TOC) fluxes severely decreased at 8 °C compared to the in situ temperature of 12 °C. Conversely, no significant differences in calcification, respiration, and TOC fluxes were observed between corals maintained at 12 and 16 °C, suggesting that the fitness of this CWC is higher in temperate rather than cold environments. The capacity to maintain physiological functions between 12 and 16 °C allows D. cornigera to be the most abundant CWC species in deep-sea ecosystems where temperatures are too warm for other CWC species (e.g., Canary Islands). This study also shows that not all CWC species occurring in the Mediterranean Sea (at deep-water temperatures of 12-14 °C) are currently living at their upper thermal tolerance limit. © 2014 Springer-Verlag Berlin Heidelber

    Predictive Ensemble Maps for cold-water coral distributions in the Cap de Creus Canyon (NW Mediterranean)

    Get PDF
    Predictive habitat mapping has shown great promise to improve the understanding of the spatial distribution of benthic habitats. However, although they surely represent an important step forward in process-based ecosystem management, their predictive efficiency is not always tested by independent groundtruthing data. This is particularly true for the deep-sea environment, where sample data are always limited compared to the large extent of the areas to be mapped. The aim of this study is to apply and test different spatial models to statistically predict the distribution of three Cold-Water Coral (CWC) species (Madrepora oculata, Lophelia pertusa and Dendrophyllia cornigera) in the Cap de Creus Canyon (NW Mediterranean), based on high-resolution swath-bathymetry data and video observations from the submersible JAGO (IFM-GEOMAR). Submarine canyons act as specific hosting areas for CWCs, owing to their favourable environmental conditions, which provide habitat and shelter for a wide range of species, including commercially viable fish. Maximum Entropy (MaxEnt), General Additive Model (GAM) and decision tree model (Random Forest) were independently applied to represent non-linear species-environment relationships using terrain variables derived from multibeam bathymetry (slope, geomorphologic category, rugosity, aspect, backscatter). Relevant differences between the three models were observed. Nonetheless, the predicted areas where CWCs should be found with higher probabilities coincided for the three methods when a lower spatial scale was considered. According to the models, CWCs are most likely to be found on the medium to steeply sloping, rough walls of the southern flank of the canyon, aligning with the known CWC ecology acquired from previous studies in the area. As a final step, a probabilistic predictive ensemble has been produced merging the outcomes of the three models considered, providing a more robust prediction for the three species. The main insight is that important discrepancies can arise in using different species distribution models, especially when high spatial resolutions are considered. This could in part be the result of the different statistical assumptions behind each of the models. We suggest that a more reliable prediction could be obtained by merging models into spatial ensembles, able to reduce differences and associated uncertainties, showing hence a strong potential as an objective approach in the planning and management of natural resources

    Cold-water corals research in the lab and in the field: (1) growth rates of four CWC species maintained in aquaria, (2) new research areas: the Galicia Bank and the Avilés canyon (Atlantic and Cantabrian Sea), a scientific and methodological approach

    Get PDF
    Growth rates of 4 Cold-water Coral (CWC) species (Madrepora occulata, Lophe/ia pertusa, Desmophyllum cristagalli and Dendrophyllia cornigera) from the Mediterranean Sea have been measured under the same and controlled laboratory conditions over a nine months period. Results showed that M. occulata grew faster than the other three species, which presented similar growth rates. These results are discussed and also compared with the growth of tropical coral species maintained in aquaria, but in different light and temperature conditions, which corresponded to the usual culture conditions of these corals. It appeared that the zooxanthellate tropical coral Galaxea fascicularis exhibited similar growth rates than the CWC M. oculata. Further we present new research areas on the Atlantic and Cantabrian continental margin, the Galicia Bank and the Aviles canyon, which are part of the zones studied in the Spanish LIFE project INDEMARES, as well as possible targets as Marine Protected Areas (MPAs) for the NATURA 2000 network. Both areas are studied considering an ecosystem approach, aboarding an integrated study of the physical scenario (hydrography, geomorphology), all ecosystem compartments (fish, endo-, epi-, and suprabenthic and benthopelagic fauna) and the trophic relationships between them. All this information, together with the study of the impact of the fisheries working in the areas, will be integrated in a trophodynamic mass-balance model and will be used to identify vulnerable ecosystems (VE) (as the CWC habitats are) and essential fish habitats (EFH). This methodological approach offers a holistic view of these deep-sea ecosystems and can be used to design more effective and successful management strategies for MPA
    corecore